extrusion temperature
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 66)

H-INDEX

26
(FIVE YEARS 5)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 198
Author(s):  
Yadira Zambrano ◽  
Ingrid Contardo ◽  
María Carolina Moreno ◽  
Pedro Bouchon

Extrusion can lead to an expanded product or to a slightly expanded pellet, known as a third-generation (3G) snack. In this case, expansion occurs subsequently, in an independent thermal device (e.g., oven), out of the extruded pellet. During both processes, several structural changes occur which are linked to processing conditions, including cooking temperature, screw speed, formulation, and initial moisture content. However, a clear relationship between processing variables and the structure of pellets and expanded products has not yet been identified. Accordingly, this work aimed to study the effect of extrusion temperature (110, 135, and 150 °C) and moisture content (27, 29, and 31%) in rice-flour pellets and their microwave expansion, through a microstructural approach using micro-CT. The results showed that the lowest moisture content (27%) and the highest extrusion temperature (150 °C) led to the highest pellet volume and the highest wall thickness, which in turn led to the highest expansion after microwave heating (50 s, 800 W). Interestingly, no significant differences were observed when analyzing the ratio between the volume of the expanded products and the volume of the pellet (~2.4) when using the different processing conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kaiyang Zhu ◽  
Zichen Deng ◽  
Shi Dai ◽  
Yajun Yu

Purpose This study aims to focus on the effect of interlayer bonding and thermal decomposition on the mechanical properties of fused filament fabrication-printed polylactic acid specimens at high extrusion temperatures. Design/methodology/approach A printing process, that is simultaneous manufacturing of contour and specimen, is used to improve the printing accuracy at high extrusion temperatures. The effects of the extrusion temperature on the mechanical properties of the interlayer and intra-layer are evaluated via tensile experiments. In addition, the microstructure evolution affected by the extrusion temperature is observed using scanning electron microscopy. Findings The results show that the extrusion temperature can effectively improve the interlayer bonding property; however, the mechanical properties of the specimen for extrusion temperatures higher than 270°C may worsen owing to the thermal decomposition of the polylactic acid (PLA) material. The optimum extrusion temperature of PLA material in the three-dimensional (3D) printing process is recommended to be 250–270°C. Originality/value A temperature-compensated constitutive model for 3D printed PLA material under different extrusion temperatures is proposed. The present work facilitates the prediction of the mechanical properties of specimens at an extrusion temperature for different printing temperatures and different layers.


2021 ◽  
Author(s):  
Siswo Sumardiono ◽  
Budiyono ◽  
Heny Kusumayanti ◽  
Novian Indra Agung Prakoso ◽  
Fawzia Puti Paundrianagari ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 787
Author(s):  
Jaroslav Čapek ◽  
Lukáš Kadeřávek ◽  
Jan Pinc ◽  
Jaromír Kopeček ◽  
Ladislav Klimša

In this study, we prepared zinc wires with a diameter of 250 µm by direct extrusion using an extrusion ratio of 576. We studied the influence of the extrusion temperature and microstructure of the initial Zn billets on the microstructural and mechanical characteristics of the extruded wires. The extrusion temperature played a significant role in the final grain size. The wires extruded at 300 °C possessed a coarse-grained microstructure and the shape of their tensile stress–strain curves suggested that twinning played an important role during their deformation. A significant influence of the initial grain size on the final microstructure was observed after the extrusion at 100 °C. The wires prepared from the billet with a very coarse-grained microstructure possessed a bimodal grain size. A significant coarsening of their microstructure was observed after the tensile test. The wires prepared from the medium-grained billets at 100 °C were relatively coarse-grained, but their grain size was stable during the straining, resulting in the highest ultimate tensile strength. This preliminary study shows that strong attention should be paid to the extrusion parameters and the microstructure of the initial billets, because they significantly influence the microstructure and mechanical behavior of the obtained wires.


2021 ◽  
Author(s):  
Yuqin Ma ◽  
Fei Li ◽  
Wei Xu ◽  
Long Yan ◽  
Haiyin Guo ◽  
...  

Abstract The graphene oxide-carbon fiber hybrid reinforced resin matrix (GO-CF/EP) composites were prepared by vacuum infiltration hot-pressing molding process. The effects of extrusion temperature on the microstructure, fracture mechanism and mechanical properties of GO-CF/EP composites were investigated by setting different extrusion temperatures. In the experiments, the extrusion temperature was controlled as 30℃, 40℃, 50℃, 60℃ and 70℃ respectively. It was found that the best mechanical property of composites and infiltration effect of matrix in the fiber gap were obtained at the temperature of 50℃. The bending strength of the material reached 977 MPa through the performance test. The results showed the matrix viscosity was high and the fluidity was poor when the extrusion temperature was low. Poor penetration of the matrix resulted in a large number of fibers failing to bond together. The stress was difficult to transfer to other fibers through the matrix and the strengthening effect of graphene oxide (GO) was weak when the composite was subjected to external force. This phenomenon led to poor mechanical properties of composites. Under the condition of higher temperature, the flow speed of the matrix and the curing speed of composites could be improved. As a result, some of the matrix was solidified in advance while being pressed out, which led to cracks and other defects in the process of loading and affects the mechanical properties of the composites. However, the mechanical properties of the composites with higher extrusion temperature were better than those with lower extrusion temperature due to the existence of graphene oxide in the fiber gap.


Sign in / Sign up

Export Citation Format

Share Document