Assessment of Passenger Ride Comfort during Vertical Vibration of Mid-size Saloon and Off-road Vehicles on Asphalt Roads

Author(s):  
Shawki A. Abouel-Seoud
Author(s):  
Giampiero Mastinu ◽  
Massimiliano Gobbi ◽  
Carlo Miano

Actuators ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 42 ◽  
Author(s):  
Keigo Ikeda ◽  
Ayato Endo ◽  
Ryosuke Minowa ◽  
Takayoshi Narita ◽  
Hideaki Kato

Active seat suspension has been proposed to improve ride comfort for ultra-compact mobility. Regarding the ride comfort of passengers due to vertical vibration, the authors have confirmed from biometry measurements that reduction of the vibration acceleration does not always produce the best ride comfort for passengers. Therefore, heart rate variability that can quantitatively reflect stress is measured in real time, and a control method was proposed that feeds back to active suspension and confirms its effectiveness by fundamental verification. In this paper, we will confirm the influence of the vibration stress on the psychological state of the occupant by the masking method.


Author(s):  
Xiaofeng Yang ◽  
Long Yan ◽  
Yujie Shen ◽  
Hongchang Li ◽  
Yanling Liu

Inerter, a new type of mass element, can increase the inertia of motion between two endpoints. In order to study the dynamic inertia effect of inerter–spring–damper suspension for heavy vehicle on ride comfort and road friendliness, the inerter–spring–damper suspension is applied and its mechanism is studied. This paper establishes a half vehicle model of inerter–spring–damper suspension for heavy vehicle. The parameters of inerter–spring–damper suspension for heavy vehicle are optimized by multi-objective genetic algorithm and system simulations are carried out. The parametric influence of different spring stiffness, damping coefficient, inertance, and load on suspension performance is also studied. The simulation results demonstrate that the centroid acceleration and pitch angular acceleration are improved by 24.90% and 23.54%, respectively, and the comprehensive road damage coefficient is reduced by 4.05%. The results illustrate that the inerter–spring–damper suspension can decrease the vertical vibration of vehicle suspension especially in low frequency and reduce the road damage. The analyses of suspension parameters perturbation reveal their different effect laws of the different wheels on vehicle ride comfort and road friendliness, which provide a theoretical basis for setting parameters of inerter–spring–damper suspension.


2020 ◽  
Vol 10 (22) ◽  
pp. 8167
Author(s):  
Mădălina Dumitriu ◽  
Dragoș Ionuț Stănică

The theoretical research on means to reduce the vertical vibrations and improve the ride comfort of the railway vehicle relies on a mechanical model obtained from the simplified representation of the vehicle, while considering the important factors and elements affecting the vibration behaviour of the carbody. One of these elements is the anti-yaw damper, mounted longitudinally, between the bogie and the vehicle carbody. The anti-yaw damper reduces the lateral vibrations and inhibits the yaw motion of the vehicle, a reason for which this element is not usually introduced in the vehicle model when studying the vertical vibrations. Nevertheless, due to the position of the clamping points of the anti-yaw damper onto the carbody and the bogie, the damping force is generated not only in the yawing direction but also in the vertical and longitudinal directions. These forces act upon the vehicle carbody, impacting its vertical vibration behaviour. The paper analyzes the effect of the anti-winding damper on the vertical vibrations of the railway vehicle carbody and the ride comfort, based on the results derived from the numerical simulations. They highlight the influence of the damping, stiffness and the damper mounting angle on the power spectral density of the carbody vertical acceleration and the ride comfort index.


2012 ◽  
Vol 510 ◽  
pp. 249-254 ◽  
Author(s):  
Jin Feng ◽  
Yuan Hua Chen

Bus vibration is studied by the finite element method (FEM) base on bus structure model. The bus mathematical model of vertical vibration is established and the vibration response variables were deduced with the modal analysis method. The finite element (FE) model is established and decoupled. The transformational relation between spatial frequency displacement power spectral density (PSD) and temporal frequency displacement PSD and the sampling characteristics of the road irregularity PSD in numerical computation are discussed. Road irregularity load is modeled in software. The FE model is solved using modal analysis method and the acceleration PSD of each keypoint can be gained. Finally, a road test experiment is carried on to verify the simulation results. The example indicated that study on vehicle ride comford by FEM has instructive meaning.


Author(s):  
Farhana Lamis ◽  
Sara E. Wilson

Low back disorders are very common affecting up to 80% of the population in their lifetime [1]. Whole body vibration (WBV) exposure has long been identified as an important risk factor for low back disorders in industrial workers [2]. A potential mechanism has been proposed by which vibration may lead to injury. Namely, vibration-induced losses in proprioception may lead to inappropriate stabilization and poor dynamic control of the lumbar spine [3]. Increases in proprioceptive errors and in delays in neuormotor response have been demonstrated with 5 Hz, vertical seatpan vibration [3]. While vertical vibration exposure is a common occupational exposure, in some cases, such as off road vehicles and construction vehicles horizontal (fore-aft) vibration may dominate [4]. In this study, the objective was to investigate how the whole body, horizontal, seatpan vibration affects muscle response and to compare these results with the previously studied whole body vertical vibration.


Sign in / Sign up

Export Citation Format

Share Document