A Novel Air Index for Range Queries in Road Networks

Author(s):  
M. Veeresha ◽  
M. Sugumaran

Objective of the present work is to improve range query performance using Hybrid Spatial Air Index (HSAI). HSAI has been designed with combination of both cache management and network coding for processing range queries in road networks. HSAI has been utilized the advantage of both cache management and network coding and reduce client search space. The experiments have been conducted for evaluating performance, the experimental results show that HSAI outperform.

Author(s):  
M. Veeresha ◽  
M. Sugumaran ◽  
D. Sandeep ◽  

Author(s):  
M. Veeresha ◽  
M. Sugumaran

Spatial Air Index (SAI) has been proposed for improving query performance of k-nearest neighbour queries in road networks. SAI has been effectively utilized the usage of Adaptive Cooperative Caching (ACC) and reduced search space. Experiments have been conducted for evaluated query result, the experimental result show that SAI outperform compared to state-of-the-art Network Partition Index (NPI).


2021 ◽  
Author(s):  
Che-Hang Cliff Chan

The thesis presents a Genetic Algorithm with Adaptive Search Space (GAASS) proposed to improve both convergence performance and solution accuracy of traditional Genetic Algorithms(GAs). The propsed GAASS method has bee hybridized to a real-coded genetic algorithm to perform hysteresis parameters identification and hystereis invers compensation of an electromechanical-valve acuator installed on a pneumatic system. The experimental results have demonstrated the supreme performance of the proposed GAASS in the search of optimum solutions.


2021 ◽  
Vol 27 (11) ◽  
pp. 563-574
Author(s):  
V. V. Kureychik ◽  
◽  
S. I. Rodzin ◽  

Computational models of bio heuristics based on physical and cognitive processes are presented. Data on such characteristics of bio heuristics (including evolutionary and swarm bio heuristics) are compared.) such as the rate of convergence, computational complexity, the required amount of memory, the configuration of the algorithm parameters, the difficulties of software implementation. The balance between the convergence rate of bio heuristics and the diversification of the search space for solutions to optimization problems is estimated. Experimental results are presented for the problem of placing Peco graphs in a lattice with the minimum total length of the graph edges.


Author(s):  
Tüze Kuyucu ◽  
Ivan Tanev ◽  
Katsunori Shimohara

In Genetic Programming (GP), most often the search space grows in a greater than linear fashion as the number of tasks required to be accomplished increases. This is a cause for one of the greatest problems in Evolutionary Computation (EC): scalability. The aim of the work presented here is to facilitate the evolution of control systems for complex robotic systems. The authors use a combination of mechanisms specifically designed to facilitate the fast evolution of systems with multiple objectives. These mechanisms are: a genetic transposition inspired seeding, a strongly-typed crossover, and a multiobjective optimization. The authors demonstrate that, when used together, these mechanisms not only improve the performance of GP but also the reliability of the final designs. They investigate the effect of the aforementioned mechanisms on the efficiency of GP employed for the coevolution of locomotion gaits and sensing of a simulated snake-like robot (Snakebot). Experimental results show that the mechanisms set forth contribute to significant increase in the efficiency of the evolution of fast moving and sensing Snakebots as well as the robustness of the final designs.


2020 ◽  
pp. 1-16
Author(s):  
Rui Sun ◽  
Meng Han ◽  
Chunyan Zhang ◽  
Mingyao Shen ◽  
Shiyu Du

High utility itemset mining(HUIM) with negative utility is an emerging data mining task. However, the setting of the minimum utility threshold is always a challenge when mining high utility itemsets(HUIs) with negative items. Although the top-k HUIM method is very common, this method can only mine itemsets with positive items, and the problem of missing itemsets occurs when mining itemsets with negative items. To solve this problem, we first propose an effective algorithm called THN (Top-k High Utility Itemset Mining with Negative Utility). It proposes a strategy for automatically increasing the minimum utility threshold. In order to solve the problem of multiple scans of the database, it uses transaction merging and dataset projection technology. It uses a redefined sub-tree utility value and a redefined local utility value to prune the search space. Experimental results on real datasets show that THN is efficient in terms of runtime and memory usage, and has excellent scalability. Moreover, experiments show that THN performs particularly well on dense datasets.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhaojuan Zhang ◽  
Wanliang Wang ◽  
Ruofan Xia ◽  
Gaofeng Pan ◽  
Jiandong Wang ◽  
...  

Abstract Background Reconstructing ancestral genomes is one of the central problems presented in genome rearrangement analysis since finding the most likely true ancestor is of significant importance in phylogenetic reconstruction. Large scale genome rearrangements can provide essential insights into evolutionary processes. However, when the genomes are large and distant, classical median solvers have failed to adequately address these challenges due to the exponential increase of the search space. Consequently, solving ancestral genome inference problems constitutes a task of paramount importance that continues to challenge the current methods used in this area, whose difficulty is further increased by the ongoing rapid accumulation of whole-genome data. Results In response to these challenges, we provide two contributions for ancestral genome inference. First, an improved discrete quantum-behaved particle swarm optimization algorithm (IDQPSO) by averaging two of the fitness values is proposed to address the discrete search space. Second, we incorporate DCJ sorting into the IDQPSO (IDQPSO-Median). In comparison with the other methods, when the genomes are large and distant, IDQPSO-Median has the lowest median score, the highest adjacency accuracy, and the closest distance to the true ancestor. In addition, we have integrated our IDQPSO-Median approach with the GRAPPA framework. Our experiments show that this new phylogenetic method is very accurate and effective by using IDQPSO-Median. Conclusions Our experimental results demonstrate the advantages of IDQPSO-Median approach over the other methods when the genomes are large and distant. When our experimental results are evaluated in a comprehensive manner, it is clear that the IDQPSO-Median approach we propose achieves better scalability compared to existing algorithms. Moreover, our experimental results by using simulated and real datasets confirm that the IDQPSO-Median, when integrated with the GRAPPA framework, outperforms other heuristics in terms of accuracy, while also continuing to infer phylogenies that were equivalent or close to the true trees within 5 days of computation, which is far beyond the difficulty level that can be handled by GRAPPA.


Sign in / Sign up

Export Citation Format

Share Document