Computational Models of Bio Heuristics Based on Physical and Cognitive Processes (Review)

2021 ◽  
Vol 27 (11) ◽  
pp. 563-574
Author(s):  
V. V. Kureychik ◽  
◽  
S. I. Rodzin ◽  

Computational models of bio heuristics based on physical and cognitive processes are presented. Data on such characteristics of bio heuristics (including evolutionary and swarm bio heuristics) are compared.) such as the rate of convergence, computational complexity, the required amount of memory, the configuration of the algorithm parameters, the difficulties of software implementation. The balance between the convergence rate of bio heuristics and the diversification of the search space for solutions to optimization problems is estimated. Experimental results are presented for the problem of placing Peco graphs in a lattice with the minimum total length of the graph edges.

2021 ◽  
Vol 27 (10) ◽  
pp. 507-520
Author(s):  
V. V. Kureychik ◽  
◽  
S. I. Rodzin ◽  

omputational models of evolutionary and swarm algorithms using nature-inspired mechanisms of self-organization and learning are presented. Experimental results are presented for the problem of placing a graph on a plane with the minimum total length of the graph edges.


2011 ◽  
Vol 21 (09) ◽  
pp. 2597-2622 ◽  
Author(s):  
FANGZHEN GE ◽  
ZHEN WEI ◽  
YANG LU ◽  
LIXIANG LI ◽  
YIXIAN YANG

Chaotic Ant Swarm (CAS) is an optimization algorithm based on swarm intelligence theory, which has been applied to find the global optimum solution in search space. However, it often loses its effectiveness and advantages when applied to large and complex problems, e.g. those with high dimensions. To resolve the problems of high computational complexity and low solution accuracy existing in CAS, we propose a Disturbance Chaotic Ant Swarm (DCAS) algorithm to significantly improve the performance of the original algorithm. The aim of this paper is achieved by three strategies which include modifying the method of updating ant's best position, neighbor selection method and establishing a self-adaptive disturbance strategy. The global convergence of the DCAS algorithm is proved in this paper. Extensive computational simulations and comparisons are carried out to validate the performance of the DCAS on two sets of benchmark functions with up to 1000 dimensions. The results show clearly that DCAS substantially enhances the performance of the CAS paradigm in terms of computational complexity, global optimality, solution accuracy and algorithm reliability for complex high-dimensional optimization problems.


2016 ◽  
Vol 12 (2) ◽  
pp. 423-435 ◽  
Author(s):  
Javier Luis Mroginski ◽  
Pablo Alejandro Beneyto ◽  
Guillermo J Gutierrez ◽  
Ariel Di Rado

Purpose – There are many problems in civil or mechanical engineering related to structural design. In such a case, the solution techniques which lead to deterministic results are no longer valid due to the heuristic nature of design problems. The purpose of this paper is to propose a computational tool based on genetic algorithms, applied to the optimal design of cross-sections (solid tubes) of 3D truss structures. Design/methodology/approach – The main feature of this genetic algorithm approach is the introduction of a selective-smart method developed in order to improve the convergence rate of large optimization problems. This selective genetic algorithm is based on a preliminary sensitivity analysis performed over each variable, in order to reduce the search space of the evolutionary process. In order to account for the optimization of the total weight, the displacement (of a specific section) and the internal stresses distribution of the structure a multiobjective optimization function was proposed. Findings – The numerical results presented in this paper show a significant improvement in the convergence rate as well as an important reduction in the relative error, compared to the exact solution. Originality/value – The variables sensitivity analysis put forward in this approach introduces a significant improvement in the convergence rate of the genetic algorithm proposed in this paper.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740087 ◽  
Author(s):  
Ming Zhang ◽  
Zhicheng Ji ◽  
Yan Wang

To improve the convergence rate and make a balance between the global search and local turning abilities, this paper proposes a decentralized form of artificial bee colony (ABC) algorithm with dynamic multi-populations by means of fuzzy C-means (FCM) clustering. Each subpopulation periodically enlarges with the same size during the search process, and the overlapping individuals among different subareas work for delivering information acting as exploring the search space with diffusion of solutions. Moreover, a Gaussian-based search equation with redefined local attractor is proposed to further accelerate the diffusion of the best solution and guide the search towards potential areas. Experimental results on a set of benchmarks demonstrate the competitive performance of our proposed approach.


Author(s):  
Umit Can ◽  
Bilal Alatas

The classical optimization algorithms are not efficient in solving complex search and optimization problems. Thus, some heuristic optimization algorithms have been proposed. In this paper, exploration of association rules within numerical databases with Gravitational Search Algorithm (GSA) has been firstly performed. GSA has been designed as search method for quantitative association rules from the databases which can be regarded as search space. Furthermore, determining the minimum values of confidence and support for every database which is a hard job has been eliminated by GSA. Apart from this, the fitness function used for GSA is very flexible. According to the interested problem, some parameters can be removed from or added to the fitness function. The range values of the attributes have been automatically adjusted during the time of mining of the rules. That is why there is not any requirements for the pre-processing of the data. Attributes interaction problem has also been eliminated with the designed GSA. GSA has been tested with four real databases and promising results have been obtained. GSA seems an effective search method for complex numerical sequential patterns mining, numerical classification rules mining, and clustering rules mining tasks of data mining.


Author(s):  
Prachi Agrawal ◽  
Talari Ganesh ◽  
Ali Wagdy Mohamed

AbstractThis article proposes a novel binary version of recently developed Gaining Sharing knowledge-based optimization algorithm (GSK) to solve binary optimization problems. GSK algorithm is based on the concept of how humans acquire and share knowledge during their life span. A binary version of GSK named novel binary Gaining Sharing knowledge-based optimization algorithm (NBGSK) depends on mainly two binary stages: binary junior gaining sharing stage and binary senior gaining sharing stage with knowledge factor 1. These two stages enable NBGSK for exploring and exploitation of the search space efficiently and effectively to solve problems in binary space. Moreover, to enhance the performance of NBGSK and prevent the solutions from trapping into local optima, NBGSK with population size reduction (PR-NBGSK) is introduced. It decreases the population size gradually with a linear function. The proposed NBGSK and PR-NBGSK applied to set of knapsack instances with small and large dimensions, which shows that NBGSK and PR-NBGSK are more efficient and effective in terms of convergence, robustness, and accuracy.


2021 ◽  
Vol 11 (3) ◽  
pp. 1286 ◽  
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Ali Dehghani ◽  
Om P. Malik ◽  
Ruben Morales-Menendez ◽  
...  

One of the most powerful tools for solving optimization problems is optimization algorithms (inspired by nature) based on populations. These algorithms provide a solution to a problem by randomly searching in the search space. The design’s central idea is derived from various natural phenomena, the behavior and living conditions of living organisms, laws of physics, etc. A new population-based optimization algorithm called the Binary Spring Search Algorithm (BSSA) is introduced to solve optimization problems. BSSA is an algorithm based on a simulation of the famous Hooke’s law (physics) for the traditional weights and springs system. In this proposal, the population comprises weights that are connected by unique springs. The mathematical modeling of the proposed algorithm is presented to be used to achieve solutions to optimization problems. The results were thoroughly validated in different unimodal and multimodal functions; additionally, the BSSA was compared with high-performance algorithms: binary grasshopper optimization algorithm, binary dragonfly algorithm, binary bat algorithm, binary gravitational search algorithm, binary particle swarm optimization, and binary genetic algorithm. The results show the superiority of the BSSA. The results of the Friedman test corroborate that the BSSA is more competitive.


Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 16
Author(s):  
George Tsakalidis ◽  
Kostas Georgoulakos ◽  
Dimitris Paganias ◽  
Kostas Vergidis

Business process optimization (BPO) has become an increasingly attractive subject in the wider area of business process intelligence and is considered as the problem of composing feasible business process designs with optimal attribute values, such as execution time and cost. Despite the fact that many approaches have produced promising results regarding the enhancement of attribute performance, little has been done to reduce the computational complexity due to the size of the problem. The proposed approach introduces an elaborate preprocessing phase as a component to an established optimization framework (bpoF) that applies evolutionary multi-objective optimization algorithms (EMOAs) to generate a series of diverse optimized business process designs based on specific process requirements. The preprocessing phase follows a systematic rule-based algorithmic procedure for reducing the library size of candidate tasks. The experimental results on synthetic data demonstrate a considerable reduction of the library size and a positive influence on the performance of EMOAs, which is expressed with the generation of an increasing number of nondominated solutions. An important feature of the proposed phase is that the preprocessing effects are explicitly measured before the EMOAs application; thus, the effects on the library reduction size are directly correlated with the improved performance of the EMOAs in terms of average time of execution and nondominated solution generation. The work presented in this paper intends to pave the way for addressing the abiding optimization challenges related to the computational complexity of the search space of the optimization problem by working on the problem specification at an earlier stage.


2021 ◽  
Vol 11 (8) ◽  
pp. 3430
Author(s):  
Erik Cuevas ◽  
Héctor Becerra ◽  
Héctor Escobar ◽  
Alberto Luque-Chang ◽  
Marco Pérez ◽  
...  

Recently, several new metaheuristic schemes have been introduced in the literature. Although all these approaches consider very different phenomena as metaphors, the search patterns used to explore the search space are very similar. On the other hand, second-order systems are models that present different temporal behaviors depending on the value of their parameters. Such temporal behaviors can be conceived as search patterns with multiple behaviors and simple configurations. In this paper, a set of new search patterns are introduced to explore the search space efficiently. They emulate the response of a second-order system. The proposed set of search patterns have been integrated as a complete search strategy, called Second-Order Algorithm (SOA), to obtain the global solution of complex optimization problems. To analyze the performance of the proposed scheme, it has been compared in a set of representative optimization problems, including multimodal, unimodal, and hybrid benchmark formulations. Numerical results demonstrate that the proposed SOA method exhibits remarkable performance in terms of accuracy and high convergence rates.


2020 ◽  
Vol 11 (1) ◽  
pp. 344
Author(s):  
Pedro Ramos Lorente ◽  
Raúl Martín Ferrer ◽  
Fernando Arranz Martínez ◽  
Guillermo Palacios-Navarro

In the field of active noise control (ANC), a popular method is the modified filtered-x LMS algorithm. However, it has two drawbacks: its computational complexity higher than that of the conventional FxLMS, and its convergence rate that could still be improved. Therefore, we propose an adaptive strategy which aims at speeding up the convergence rate of an ANC system dealing with periodic disturbances. This algorithm consists in combining the organization of the filter weights in a hierarchy of subfilters of shorter length and their sequential partial updates (PU). Our contribution is threefold: (1) we provide the theoretical basis of the existence of a frequency-dependent parameter, called gain in step-size. (2) The theoretical upper bound of the step-size is compared with the limit obtained from simulations. (3) Additional experiments show that this strategy results in a fast algorithm with a computational complexity close to that of the conventional FxLMS.


Sign in / Sign up

Export Citation Format

Share Document