scholarly journals Osteoporosis Prevalence in Patients Infected with Human Immunodeficiency Virus and Its Correlation Between CD4+ T Cell Levels

2021 ◽  
Vol 27 (1) ◽  
pp. 20-23
Author(s):  
Rana Terlemez ◽  
Selda Çiftci ◽  
Merve Günerli ◽  
Beril Doğu ◽  
Figen Yılmaz ◽  
...  
2005 ◽  
Vol 79 (20) ◽  
pp. 13195-13195
Author(s):  
Veronique Stove ◽  
Inge Van de Walle ◽  
Evelien Naessens ◽  
Elisabeth Coene ◽  
Christophe Stove ◽  
...  

2020 ◽  
Vol 222 (11) ◽  
pp. 1837-1842 ◽  
Author(s):  
Nikolaus Jilg ◽  
Pilar Garcia-Broncano ◽  
Michael Peluso ◽  
Florencia P Segal ◽  
Ronald J Bosch ◽  
...  

Abstract AIDS Clinical Trials Group study A5308 found reduced T-cell activation and exhaustion in human immunodeficiency virus (HIV) controllers start antiretroviral therapy (ART). We further assessed HIV-specific T-cell responses and post-ART viral loads. Before ART, the 31% of participants with persistently undetectable viremia had more robust HIV-specific T-cell responses. During ART, significant decreases were observed in a broad range of T-cell responses. Eight controllers in A5308 and the Study of the Consequences of the Protease Inhibitor Era (SCOPE) cohort showed no viremia above the level of quantification in the first 12 weeks after ART discontinuation. ART significantly reduced HIV-specific T-cell responses in HIV controllers but did not adversely affect controller status after ART discontinuation.


2006 ◽  
Vol 81 (4) ◽  
pp. 1619-1631 ◽  
Author(s):  
Xu G. Yu ◽  
Mathias Lichterfeld ◽  
Senica Chetty ◽  
Katie L. Williams ◽  
Stanley K. Mui ◽  
...  

ABSTRACT The relative contributions of HLA alleles and T-cell receptors (TCRs) to the prevention of mutational viral escape are unclear. Here, we examined human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses restricted by two closely related HLA class I alleles, B*5701 and B*5703, that differ by two amino acids but are both associated with a dominant response to the same HIV-1 Gag epitope KF11 (KAFSPEVIPMF). When this epitope is presented by HLA-B*5701, it induces a TCR repertoire that is highly conserved among individuals, cross-recognizes viral epitope variants, and is rarely associated with mutational escape. In contrast, KF11 presented by HLA-B*5703 induces an entirely different, more heterogeneous TCR β-chain repertoire that fails to recognize specific KF11 escape variants which frequently arise in clade C-infected HLA-B*5703+ individuals. These data show the influence of HLA allele subtypes on TCR selection and indicate that extensive TCR diversity is not a prerequisite to prevention of allowable viral mutations.


2018 ◽  
Vol 92 (14) ◽  
Author(s):  
Hanna B. Scinto ◽  
Sandeep Gupta ◽  
Swati Thorat ◽  
Muhammad M. Mukhtar ◽  
Anthony Griffiths ◽  
...  

ABSTRACTThe phase III RV144 human immunodeficiency virus (HIV) vaccine trial conducted in Thailand remains the only study to show efficacy in decreasing the HIV acquisition risk. In Thailand, circulating recombinant forms of HIV clade A/E (CRF01_AE) predominate; in such viruses,envoriginates from clade E (HIV-E). We constructed a simian-human immunodeficiency virus (SHIV) chimera carryingenvisolated from an RV144 placebo recipient in the SHIV-1157ipd3N4 backbone. The latter contains long terminal repeats (LTRs) with duplicated NF-κB sites, thus resembling HIV LTRs. We devised a novel strategy to adapt the parental infectious molecular clone (IMC), R5 SHIV-E1, to rhesus macaques: the simultaneous depletion of B and CD8+cells followed by the intramuscular inoculation of proviral DNA and repeated administrations of cell-free virus. High-level viremia and CD4+T-cell depletion ensued. Passage 3 virus unexpectedly caused acute, irreversible CD4+T-cell loss; the partially adapted SHIV had become dual tropic. Virus and IMCs with exclusive R5 tropism were reisolated from earlier passages, combined, and used to complete adaptation through additional macaques. The final isolate, SHIV-E1p5, remained solely R5 tropic. It had a tier 2 neutralization phenotype, was mucosally transmissible, and was pathogenic. Deep sequencing revealed 99% Env amino acid sequence conservation; X4-only and dual-tropic strains had evolved independently from an early branch of parental SHIV-E1. To conclude, our primate model data reveal that SHIV-E1p5 recapitulates important aspects of HIV transmission and pathobiology in humans.IMPORTANCEUnderstanding the protective principles that lead to a safe, effective vaccine against HIV in nonhuman primate (NHP) models requires test viruses that allow the evaluation of anti-HIV envelope responses. Reduced HIV acquisition risk in RV144 has been linked to nonneutralizing IgG antibodies with a range of effector activities. Definitive experiments to decipher the mechanisms of the partial protection observed in RV144 require passive-immunization studies in NHPs with a relevant test virus. We have generated such a virus by insertingenvfrom an RV144 placebo recipient into a SHIV backbone with HIV-like LTRs. The final SHIV-E1p5 isolate, grown in rhesus monkey peripheral blood mononuclear cells, was mucosally transmissible and pathogenic. Earlier SHIV-E passages showed a coreceptor switch, again mimicking HIV biology in humans. Thus, our series of SHIV-E strains mirrors HIV transmission and disease progression in humans. SHIV-E1p5 represents a biologically relevant tool to assess prevention strategies.


2005 ◽  
Vol 86 (2) ◽  
pp. 349-354 ◽  
Author(s):  
Eva K. L. Nordström ◽  
Mattias N. E. Forsell ◽  
Christina Barnfield ◽  
Eivor Bonin ◽  
Tomas Hanke ◽  
...  

With the human immunodeficiency virus type 1 (HIV-1) epidemic expanding at increasing speed, development of a safe and effective vaccine remains a high priority. One of the most central vaccine platforms considered is plasmid DNA. However, high doses of DNA and several immunizations are typically needed to achieve detectable T-cell responses. In this study, a Semliki Forest virus replicon DNA vaccine designed for human clinical trials, DREP.HIVA, encoding an antigen that is currently being used in human trials in the context of a conventional DNA plasmid, pTHr.HIVA, was generated. It was shown that a single immunization of DREP.HIVA stimulated HIV-1-specific T-cell responses in mice, suggesting that the poor immunogenicity of conventional DNA vaccines may be enhanced by using viral replicon-based plasmid systems. The results presented here support the evaluation of Semliki Forest virus replicon DNA vaccines in non-human primates and in clinical studies.


Sign in / Sign up

Export Citation Format

Share Document