Reflection and Refraction of SH-Waves at a Corrugated Interface between Two-Dimensional Transversely Isotropic Half-Spaces.

1997 ◽  
Vol 45 (5) ◽  
pp. 347-362 ◽  
Author(s):  
Sushil K. Tomar ◽  
Sohan L. Saini
1996 ◽  
Vol 86 (2) ◽  
pp. 524-529
Author(s):  
Hayrullah Karabulut ◽  
John F. Ferguson

Abstract An extension of the boundary integral method for SH waves is given for transversely isotropic media. The accuracy of the method is demonstrated for a simple flat interface problem by comparison to the Cagniard-de Hoop solution. The method is further demonstrated for a case with interface topography for both surface and vertical seismic profiles. The new method is found to be both accurate and effective.


Geophysics ◽  
1994 ◽  
Vol 59 (11) ◽  
pp. 1774-1779 ◽  
Author(s):  
Joe Dellinger ◽  
Lev Vernik

The elastic properties of layered rocks are often measured using the pulse through‐transmission technique on sets of cylindrical cores cut at angles of 0, 90, and 45 degrees to the layering normal (e.g., Vernik and Nur, 1992; Lo et al., 1986; Jones and Wang, 1981). In this method transducers are attached to the flat ends of the three cores (see Figure 1), the first‐break traveltimes of P, SV, and SH‐waves down the axes are measured, and a set of transversely isotropic elastic constants are fit to the results. The usual assumption is that frequency dispersion, boundary reflections, and near‐field effects can all be safely ignored, and that the traveltimes measure either vertical anisotropic group velocity (if the transducers are very small compared to their separation) or phase velocity (if the transducers are relatively wide compared to their separation) (Auld, 1973).


Sign in / Sign up

Export Citation Format

Share Document