scholarly journals Atmospheric Pressure Waves Generated from Large Earthquakes, Tsunamis and Large Volcanic Eruptions

2011 ◽  
Vol 64 (1) ◽  
pp. 47-62
Author(s):  
Takeshi MIKUMO
Tellus B ◽  
2010 ◽  
Vol 62 (5) ◽  
Author(s):  
Victor Brovkin ◽  
Stephan J. Lorenz ◽  
Johann Jungclaus ◽  
Thomas Raddatz ◽  
Claudia Timmreck ◽  
...  

2018 ◽  
Vol 31 (24) ◽  
pp. 9869-9879 ◽  
Author(s):  
Jianping Duan ◽  
Lun Li ◽  
Zhuguo Ma ◽  
Jan Esper ◽  
Ulf Büntgen ◽  
...  

Large volcanic eruptions may cause abrupt summer cooling over large parts of the globe. However, no comparable imprint has been found on the Tibetan Plateau (TP). Here, we introduce a 400-yr-long temperature-sensitive network of 17 tree-ring maximum latewood density sites from the TP that demonstrates that the effects of tropical eruptions on the TP are generally greater than those of extratropical eruptions. Moreover, we found that large tropical eruptions accompanied by subsequent El Niño events caused less summer cooling than those that occurred without El Niño association. Superposed epoch analysis (SEA) based on 27 events, including 14 tropical eruptions and 13 extratropical eruptions, shows that the summer cooling driven by extratropical eruptions is insignificant on the TP, while significant summer temperature decreases occur subsequent to tropical eruptions. Further analysis of the TP August–September temperature responses reveals a significant postvolcanic cooling only when no El Niño event occurred. However, there is no such cooling for all other situations, that is, tropical eruptions together with a subsequent El Niño event, as well as extratropical eruptions regardless of the occurrence of an El Niño event. The averaged August–September temperature deviation ( Tdev) following 10 large tropical eruptions without a subsequent El Niño event is up to −0.48° ± 0.19°C (with respect to the preceding 5-yr mean), whereas the temperature deviation following 4 large tropical eruptions with an El Niño association is approximately 0.23° ± 0.16°C. These results indicate a mitigation effect of El Niño events on the TP temperature response to large tropical eruptions. The possible mechanism is that El Niño events can weaken the Indian summer monsoon with a subsequent decrease in rainfall and cooling effect, which may lead to a relatively high temperature on the TP, one of the regions affected by the Indian summer monsoon.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gino González ◽  
Eisuke Fujita ◽  
Bunichiro Shibazaki ◽  
Takumi Hayashida ◽  
Giovanni Chiodini ◽  
...  

AbstractUnderstanding the relationship cause/effect between tectonic earthquakes and volcanic eruptions is a striking topic in Earth Sciences. Volcanoes erupt with variable reaction times as a consequence of the impact of seismic waves (i.e. dynamic stress) and changes in the stress field (i.e. static stress). In 2012, three large (Mw ≥ 7.3) subduction earthquakes struck Central America within a period of 10 weeks; subsequently, some volcanoes in the region erupted a few days after, while others took months or even years to erupt. Here, we show that these three earthquakes contributed to the increase in the number of volcanic eruptions during the 7 years that followed these seismic events. We found that only those volcanoes that were already in a critical state of unrest eventually erupted, which indicates that the earthquakes only prompted the eruptions. Therefore, we recommend the permanent monitoring of active volcanoes to reveal which are more susceptible to culminate into eruption in the aftermath of the next large-magnitude earthquake hits a region.


2011 ◽  
Vol 2 (1) ◽  
pp. 133-159
Author(s):  
J. F. Tjiputra ◽  
O. H. Otterå

Abstract. Using a fully coupled global climate-carbon cycle model, we assess the potential role of volcanic eruptions on future projection of climate change and its associated carbon cycle feedback. The volcanic-like forcings are applied together with business-as-usual IPCC-A2 carbon emissions scenario. We show that very large volcanic eruptions similar to Tambora lead to short-term substantial global cooling. However, over a long period, smaller but more frequent eruptions, such as Pinatubo, would have a stronger impact on future climate change. In a scenario where the volcanic external forcings are prescribed with a five-year frequency, the induced cooling immediately lower the global temperature by more than one degree before return to the warming trend. Therefore, the climate change is approximately delayed by several decades and by the end of the 21st century, the warming is still below two degrees when compared to the present day period. The cooler climate reduces the terrestrial heterotrophic respiration in the northern high latitude and increases net primary production in the tropics, which contributes to more than 45% increase in accumulated carbon uptake over land. The increased solubility of CO2 gas in seawater associated with cooler SST is offset by reduced CO2 partial pressure gradient between ocean and atmosphere, which results in small changes in net ocean carbon uptake. Similarly, there is nearly no change in the seawater buffer capacity simulated between the different volcanic scenarios. Our study shows that even in the relatively extreme scenario where large volcanic eruptions occur every five-years period, the induced cooling only leads to a reduction of 46 ppmv atmospheric CO2 concentration as compared to the reference projection of 878 ppmv, at the end of the 21st century. With respect to sulphur injection geoengineering method, our study suggest that small scale but frequent mitigation is more efficient than the opposite. Moreover, the longer we delay, the more difficult it would be to counteract climate change.


1946 ◽  
Vol 24d (4) ◽  
pp. 105-117 ◽  
Author(s):  
W. G. Wellington

Laboratory experiments are described that demonstrate that the antennal aristae of muscoid Diptera are sensitive to slight fluctuations in pressure, acting as external baroreceptors. Further experiments show that the increase in activity exhibited by flies at low pressure is of a kinetic nature, lacking any directional element, while the reaction of flies to manually-produced pressure waves that vibrate the aristae is tactic in a baronegative sense. It is suggested that the erratic prethunderstorm flight of muscoid Diptera results largely from such a baronegative response to localized pressure changes. This suggestion is based on laboratory observations of the reactions of flies under simulated storm pressure patterns.


2014 ◽  
Vol 89 ◽  
pp. 123-128 ◽  
Author(s):  
Revital Bookman ◽  
Sagi Filin ◽  
Yoav Avni ◽  
Daniel Rosenfeld ◽  
Shmuel Marco

Sign in / Sign up

Export Citation Format

Share Document