Flood Frequency Variability During the Past 80 Years in the Slave River Delta, NWT, as Determined from Multi-Proxy Paleolimnological Analysis

Author(s):  
Bronwyn E. Brock ◽  
Margaret E. Martin ◽  
Cherie L. Mongeon ◽  
Michael A. Sokal ◽  
Sonia D. Wesche ◽  
...  
2021 ◽  
Author(s):  
Peter Gitau ◽  
Stéphanie Duvail ◽  
Dirk Verschuren ◽  
Dominique Guillaud

<p>Coastal deltas worldwide are under risk of degradation due to the increasing impacts of sea-level rise, and continuous human alterations of river basin hydrology. This research highlights the geomorphological changes that have occurred within the Tana River delta in Kenya, an important deltaic ecosystem of high biodiversity value in East Africa.</p><p>The geomorphological features (river channels, floodplain, coastal dune system) and their evolution over the past two centuries were described. Aerial and satellite imagery was used to assess the magnitude and distribution of coastal changes from the 1960s to present.  Additionally, sediment cores recovered within the mangrove environment were analysed to establish the succession of sedimentation periods and patterns. Finally, we explored the response of the coastal processes of deposition and erosion under anthropogenic alterations of the hydrological system.</p><p>It was established that over the past two centuries Tana River has changed its main channel and outlet to the Indian Ocean on three occasions. A first river avulsion occurred in the 1860s, followed by a second avulsion in the late 1890s that was promoted by human interference through channel expansion and dyke construction. The third change in river course has occurred gradually over the past 20 years, amid human efforts to engineer the river channels.</p><p>From the sediment analysis and radiocarbon dating, it is ascertained that the lower deltaic region developed rapidly over the past ~180 years, facilitated by increased sedimentation from the main Tana River. On the other hand, analysis of the coastline changes indicate that there has been increased erosion of the coastal dune system and mangrove vegetation along the former river outlet, leading to rapid marine intrusion into local subsistence farming areas. By analysing the combined impacts of both natural river dynamics and human alteration we highlight how the integrity of the Tana River delta has increasingly become vulnerable under present sea level rise and continued upstream river alteration.</p>


2021 ◽  
Vol 206 ◽  
pp. 104634
Author(s):  
Nguyen Trung Thanh ◽  
Do Huy Cuong ◽  
Karl Stattegger ◽  
Bui Viet Dung ◽  
Shouye Yang ◽  
...  

2015 ◽  
Vol 19 (10) ◽  
pp. 4307-4315 ◽  
Author(s):  
L. Elleder

Abstract. This study presents a flood frequency analysis for the Vltava River catchment using a major profile in Prague. The estimates of peak discharges for the pre-instrumental period of 1118–1824 based on documentary sources were carried out using different approaches. 187 flood peak discharges derived for the pre-instrumental period augmented 150 records for the instrumental period of 1825–2013. Flood selection was based on Q10 criteria. Six flood-rich periods in total were identified for 1118–2013. Results of this study correspond with similar studies published earlier for some central European catchments, except for the period around 1750. Presented results indicate that the territory of the present Czech Republic might have experienced extreme floods in the past, comparable – with regard to peak discharge (higher than or equal to Q10) and frequency – to the flood events recorded recently.


2009 ◽  
Vol 379 (1-2) ◽  
pp. 81-91 ◽  
Author(s):  
Bronwyn E. Brock ◽  
Yi Yi ◽  
Kenneth P. Clogg-Wright ◽  
Thomas W.D. Edwards ◽  
Brent B. Wolfe

1988 ◽  
Vol 25 (12) ◽  
pp. 1990-2004 ◽  
Author(s):  
Sandy Vanderburgh ◽  
Derald G. Smith

The Holocene Slave River delta (8300 km2) is a long (170 km), narrow (42 km average width) alluvial sand body, which extends north from the Slave River rapids at Fort Smith to Great Slave Lake, Northwest Territories. The delta is flanked by the Talston and Tethul rivers and Canadian Shield to the east and by the Little Buffalo River to the west. Wave-associated sedimentary structures in lithostratigraphic logs from river cutbanks indicate that the sandy delta was wave influenced. Most of the logs (34) consist of three facies: basal laminated mud (unknown thickness), interbedded mud and sand (2.5 m), and planar-tabular ripple sets interbedded with cross-laminated to flat-bedded sand (3.0–14.5 m).Eleven radiocarbon-dated wood samples from river cutbanks were used to reconstruct the delta paleoshoreface and to calculate the rate of progradation, which averaged 20.7 m/year from 8070 BP to the present. In the same period isostatic rebound of the delta region relative to the Liard River delta averaged 12 cm/km (a total rebound of 48 m). The data were calculated normal to the retreating Laurentide ice front.From the surface to depths of 59 m, the subaerial and subaqueous delta front exhibits barrier islands, lagoons, offshore bars or sand waves, tensional cracks, slumps and pressure ridges. The barriers and offshore bars consist of medium grain-sized sand, whereas the slumps and pressure ridges are interpreted as mud.


2013 ◽  
Vol 23 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Jingyun Zheng ◽  
Shuying Zhong ◽  
Quansheng Ge ◽  
Zhixin Hao ◽  
Xuezhen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document