scholarly journals Plasmonic coupling induced by growing processes of metal nanoparticles in wrinkled structures and driven by mechanical strain applied to a polidimethisiloxisilane template

2017 ◽  
Vol 9 (2) ◽  
pp. 45 ◽  
Author(s):  
Cataldi Ugo ◽  
Buergi Thomas

We report the mechanical control of plasmonic coupling between gold nanoparticles (GNPs) coated onto a large area wrinkled surface of an elastomeric template. Self-assembly and bottom-up procedures, were used to fabricate the sample and to increase the size of GNPs by exploiting the reduction of HAuCl4 with hydroxylamine. The elastic properties of template, the increase of nanostructure size joined with the particular grating configuration of the surface have been exploited to trigger and handle the coupling processes between the nanoparticles. Full Text: PDF ReferencesG. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen", Ann. Phys. 25, 377 (1908) CrossRef U. Kreibig and M. Vollmer, Optical properties of metal cluster, Berlin 1995 CrossRef S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007 CrossRef L. A. Lane, X. Qian, and S. Nie, "SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging", Chem. Rev. 115, 10489-10529 (2015) CrossRef N. Pazos-Perez, W. Ni, A. Schweikart, R. A. Alvarez-Puebla, A. Fery and L. M. Liz-Marzan, "Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids", Chem. Sci. 1, 174-178P (2010) CrossRef M. Aioub and M. A. El-Sayed, "A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles", J. Am. Chem. Soc. 138, 1258-1264 (2016) CrossRef G. Baffou, and R. Quidant, "Thermo-plasmonics: using metallic nanostructures as nano-sources of heat", Laser Photonics Rev. 7, No. 2, 171-187 (2013) CrossRef G. Palermo, U. Cataldi, L. De Sio, T. Beurgi, N. Tabiryan, and C. Umeton, "Optical control of plasmonic heating effects using reversible photo-alignment of nematic liquid crystals", Applied Physics 109, 191906 (2016) CrossRef J. R. Dunklin, G. T. Forcherio, K. R. Berry, Jr., and D. K. Roper, "Gold Nanoparticle Polydimethylsiloxane Thin Films Enhance Thermoplasmonic Dissipation by Internal Reflection", J. Phys. Chem. 118, 7523-7531 (2014) CrossRef Y. Jin, "Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine", Adv. Mater. 24, 5153-5165 (2012) CrossRef J. H. Lee, Q. Wu, and W. Park, "Metal nanocluster metamaterial fabricated by the colloidal self-assembly", Optics Letters 34, Issue 4, 443-445 (2009) CrossRef R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, "Tunable optical metamaterial based on liquid crystal-gold nanosphere composite", Optics Express 17, Issue 22, 19459-19469 (2009) CrossRef J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, "A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles", Optical Materials Express 2, Issue 3, 269-278 (2012) CrossRef T. Maurer, J. Marae-Djouda, U. Cataldi, A. G., Guillaume Montay, Y. Madi, B. Panicaud, D. Macias, P.-M. Adam, G. Léveque, T. Buergi, and R. Caputo, "The beginnings of plasmomechanics: towards plasmonic strain sensors", Front. Mater. Sci. 9(2) (2015) CrossRef J. N. Anker W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, "Biosensing with plasmonic nanosensors", Nature Materials 7, 442 - 453 (2008) CrossRef M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers,and R. G. Nuzzo, "Nanostructured Plasmonic Sensors", Chem. Rev. 108, 494-521 (2008) CrossRef P. K. Jain , M. A. El-Sayed, "Plasmonic coupling in noble metal nanostructures", Chemical Physics Letters 487, 153-164 (2010) CrossRef P. K. Jain, W. Huang and M. A. El-Sayed, "On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation", Nano Letters 7, 2080-2088 (2007) CrossRef U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton and T. Buergi, "Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling", Journal of Materials Chemistry C 2(37), 7927-7933 (2014). CrossRef S. K. Ghosh and T. Pal, "Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications", Chem. Rev. 107, 4797 (2007) CrossRef M. K. Kinnan and G. Chumanov, "Plasmon Coupling in Two-Dimensional Arrays of Silver Nanoparticles: II. Effect of the Particle Size and Interparticle Distance", J. Phys. Chem. C 114, 7496 (2010) CrossRef X. L. Zhu, S. S. Xiao, L. Shi, X. H. Liu, J. Zi, O. Hansen and N. A. Mortensen, "A stretch-tunable plasmonic structure with a polarization-dependent response", Opt. Express, 20, 5237 (2012) CrossRef K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith and S. Schultz, "Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles", Nano Lett. 3, 1087 (2003) CrossRef Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih and Y. F. Chen, "Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite", Appl. Phys. Lett. 96, 041904 (2010) CrossRef N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, "The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer", Appl. Phys. Lett. 75(17) (1999) CrossRef R, A. Lawton, C. R. Price, A. F. Runge, Walter J. Doherty III, S. Scott Saavedra , "Air plasma treatment of submicron thick PDMS polymer films: effect of oxidation time and storage conditions", Colloids and Surfaces A: Physicochem. Eng. Aspects 253, 213-215 (2005). CrossRef A Schweikart, N. Pazos-Perez, R. A. Alvarez-Puebla and A. Fery, "Controlling inter-nanoparticle coupling by wrinkle-assisted assembly", Soft Matter 7, 4093 (2011) CrossRef K. R. Brown, L. A. Lyon, A. P. Fox, B. D. Reiss and M. J. Natan, "Hydroxylamine Seeding of Colloidal Au Nanoparticles. 3. Controlled Formation of Conductive Au Films", Chem. Mater. 12, 314 (2000) CrossRef

2017 ◽  
Vol 9 (1) ◽  
pp. 17
Author(s):  
Giovanna Palermo ◽  
Roberto Caputo ◽  
Antonio De Luca ◽  
Cesare Paolo Umeton

Gold nanoparticles (GNPs) have proven to be good nano-sources of heat in the presence of specific electromagnetic radiation. This process, in fact, becomes strongly enhanced under plasmon resonance. In particular, the amount of generated heat and the consequent temperature increase depend on the number of GNPs that are collectively excited and on their relative distance. As a result, the regime of heat localization is deeply controlled by this last parameter. Full Text: PDF ReferencesHutter, E., and Fendler, J. H. "Exploitation of localized surface plasmon resonance". Advanced Materials 16.19, 1685-1706 (2004) CrossRef Liz-Marzán, L. M., Murphy, C. J., & Wang, J. "Nanoplasmonics". Chemical Society Reviews, 43(11), 3820-3822 (2014). CrossRef Maier, S. A. "Plasmonics: fundamentals and applications". Springer Science & Business Media (2007). CrossRef Palpant, B. "Photothermal properties of gold nanoparticles. Gold nanoparticles in physics, chemistry and biology". Imperial College Press, London, (2012). DirectLink Baffou, G. and Quidant R. "Thermo-plasmonics: using metallic nanostructures as nanosources of heat". Laser & Photonics Reviews, 7(2):171?187, (2013). CrossRef Pelton, M., Aizpurua, J., & Bryant, G. "Metal?nanoparticle plasmonics". Laser & Photonics Reviews, 2(3), 136-159 (2008). CrossRef Kreibig, U., & Vollmer, M. "Optical properties of metal clusters" (Vol. 25). Springer Science & Business Media (2013). DirectLink J., Prashant K., S. Eustis, and M. A. El-Sayed. "Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model." The Journal of Physical Chemistry B 110 (37) 18243-18253 (2006). CrossRef Jain, P. K., & El-Sayed, M. A. "Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimmers". The Journal of Physical Chemistry C, 112(13), 4954-4960 (2008). CrossRef Chapuis, P. O., Laroche, M., Volz, S., & Greffet, J. J. "Radiative heat transfer between metallic nanoparticles". Applied Physics Letters, 92(20), 201906 (2008). CrossRef Jain, P. K., & El-Sayed, M. A. "Plasmonic coupling in noble metal nanostructures". Chemical Physics Letters, 487(4), 153-164 (2010). CrossRef Cataldi, U., Caputo, R., Kurylyak, Y., Klein, G., Chekini, M. Cesare Umeton, C., Bürgi, T. "Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling". J. Mater. Chem. C, 2, 7927-7933 (2014). CrossRef


2006 ◽  
Vol 17 (11) ◽  
pp. 2821-2827 ◽  
Author(s):  
Yong Yang ◽  
Shigemasha Matsubara ◽  
Masayuki Nogami ◽  
Jianlin Shi ◽  
Weiming Huang

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1490
Author(s):  
Enrico Gazzola ◽  
Michela Cittadini ◽  
Marco Angiola ◽  
Laura Brigo ◽  
Massimo Guglielmi ◽  
...  

Solution processed TiO2 anatase film was used as sensitive layer for H2 detection for two plasmonic sensor configurations: A grating-coupled surface plasmon resonance sensor and a localized surface plasmon resonance sensor with gold nanoparticles. The main purpose of this paper is to elucidate the different H2 response observed for the two types of sensors which can be explained considering the hydrogen dissociation taking place on TiO2 at high temperature and the photocatalytic activity of the gold nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document