Power Allocation for Amplify-and-Forward Cooperative Transmission Over Rayleigh-Fading Channels

2008 ◽  
Vol 3 (3) ◽  
Author(s):  
Lian Zhao ◽  
Zaiyi Liao
2020 ◽  
Author(s):  
Yahia Alghorani ◽  
samuel pierre

<div>We investigate the performance of a dual-hop intervehicular</div><div>communications (IVC) system with relay selection</div><div>strategy. We assume a generalized fading channel model, known as cascaded Rayleigh (also called n*Rayleigh), which involves the product of n independent Rayleigh random variables. This channel model provides a realistic description of IVC, in contrast to the conventional Rayleigh fading assumption, which is more suitable for cellular networks. Unlike existing works, which mainly consider double-Rayleigh fading channels (i.e, n = 2); our system model considers the general cascading order n; for which we derive an approximate analytic solution for the outage probability under the considered scenario. Also, in this study we propose a machine learning-based power allocation</div><div>scheme to improve the link reliability in IVC. The analytical and simulation results show that both selective decode-and-forward (S-DF) and amplify-and-forward (S-AF) relaying schemes have the same diversity order in the high signal-to-noise ratio regime. In addition, our results indicate that machine learning algorithms can play a central role in selecting the best relay and allocation of transmission power.</div>


Sign in / Sign up

Export Citation Format

Share Document