Quantitative Analysis of System Based on Extended UML State Diagrams and Probabilistic Model Checking

2010 ◽  
Vol 5 (7) ◽  
Author(s):  
Yefei Zhao ◽  
Zongyuan Yang ◽  
Jinkui Xie ◽  
Qiang Liu
Author(s):  
Clemens Dubslaff ◽  
Patrick Koopmann ◽  
Anni-Yasmin Turhan

AbstractProbabilistic model checking (PMC) is a well-established method for the quantitative analysis of state based operational models such as Markov decision processes. Description logics (DLs) provide a well-suited formalism to describe and reason about knowledge and are used as basis for the web ontology language (OWL). We investigate how such knowledge described by DLs can be integrated into the PMC process, introducing ontology-mediated PMC. Specifically, we propose ontologized programs as a formalism that links ontologies to behaviors specified by probabilistic guarded commands, the de-facto standard input formalism for PMC tools such as Prism. Through DL reasoning, inconsistent states in the modeled system can be detected. We present three ways to resolve these inconsistencies, leading to different Markov decision process semantics. We analyze the computational complexity of checking whether an ontologized program is consistent under these semantics. Further, we present and implement a technique for the quantitative analysis of ontologized programs relying on standard DL reasoning and PMC tools. This way, we enable the application of PMC techniques to analyze knowledge-intensive systems.We evaluate our approach and implementation on amulti-server systemcase study,where different DL ontologies are used to provide specifications of different server platforms and situations the system is executed in.


2011 ◽  
Vol 30 (4) ◽  
pp. 257-272 ◽  
Author(s):  
S. Basagiannis ◽  
S. Petridou ◽  
N. Alexiou ◽  
G. Papadimitriou ◽  
P. Katsaros

Author(s):  
Christel Baier ◽  
Clemens Dubslaff ◽  
Sascha Klüppelholz ◽  
Marcus Daum ◽  
Joachim Klein ◽  
...  

Trains scheduling is an important problem in railway transportation. Many companies use fixed train timetabling to handle this problem. Train delays can affect the pre-defined timetables and postpone destination arrival times. Besides, delay propagation may affect other trains and degrade the performance of a railway network. An optimal timetable minimizes the total propagated delays in a network. In this paper, we propose a new approach to compute the expected propagated delays in a railway network. As the main contribution of the work, we use Discrete-time Markov chains to model a railway network with a fixed timetable and use probabilistic model checking to approximate the expected delays and the probability of reaching destinations with a desired delay. We use PRISM model checker to apply our approach for analyzing the impact of different train scheduling in double line tracks.


2016 ◽  
Vol 29 (2) ◽  
pp. 287-299 ◽  
Author(s):  
Shashank Pathak ◽  
Luca Pulina ◽  
Armando Tacchella

Sign in / Sign up

Export Citation Format

Share Document