scholarly journals Holocene paleoclimatic and paleohydrological changesin the Sárrét basin, NW Hungary

2008 ◽  
Vol 35 ◽  
pp. 25-31 ◽  
Author(s):  
Pál Sümegi ◽  
Sándor Gulyás ◽  
Gergő Persaits

According to detailed sedimentological and paleontological analyses carried out on samples taken from the Sárrét–Nádasdladány core-profile, a complete environmental history of a neotectonic depression was drawn. The sequence is composed of fluvial-lacustrine and marshland deposits which started to accumulate during the Late Glacial and culminated at the beginning of the Holocene. The highly characteristic changes in the biofacies were linked to changes in the lithofacies within this sequence. A transition in the dominance of moving water species, observable initially in lacustrine species preferring well-lit, well-oxygenated conditions was observed. Eventually, the littoral and eutrophic lacustrine species, as well as marsh-dwellers, became dominant in the profile, marking the emergence of uniform peat land in the Sárrét Basin.

2001 ◽  
Vol 38 (8) ◽  
pp. 1141-1155 ◽  
Author(s):  
G D Osborn ◽  
B J Robinson ◽  
B H Luckman

The Holocene and late glacial history of fluctuations of Stutfield Glacier are reconstructed using moraine stratigraphy, tephrochronology, and dendroglaciology. Stratigraphic sections in the lateral moraines contain tills from at least three glacier advances separated by volcanic tephras and paleosols. The oldest, pre-Mazama till is correlated with the Crowfoot Advance (dated elsewhere to be Younger Dryas equivalent). A Neoglacial till is found between the Mazama tephra and a paleosol developed on the Bridge River tephra. A log dating 2400 BP from the upper part of this till indicates that this glacier advance, correlated with the Peyto Advance, culminated shortly before deposition of the Bridge River tephra. Radiocarbon and tree-ring dates from overridden trees exposed in moraine sections indicate that the initial Cavell (Little Ice Age (LIA)) Advance overrode this paleosol and trees after A.D. 1271. Three subsequent phases of the Cavell Advance were dated by dendrochronology. The maximum glacier extent occurred in the mid-18th century, predating 1743 on the southern lateral, although ice still occupied and tilted a tree on the north lateral in 1758. Subsequent glacier advances occurred ca. 1800–1816 and in the late 19th century. The relative extent of the LIA advances at Stutfield differs from that of other major eastward flowing outlets of the Columbia Icefield, which have maxima in the mid–late 19th century. This is the first study from the Canadian Rockies to demonstrate that the large, morphologically simple, lateral moraines defining the LIA glacier limits are actually composite features, built up progressively (but discontinuously) over the Holocene and contain evidence of multiple Holocene- and Crowfoot-age glacier advances.


2020 ◽  
Author(s):  
Michael Zech ◽  
Marcel Lerch ◽  
Marcel Bliedtner ◽  
Clemens Geitner ◽  
Dieter Schäfer ◽  
...  

<p>The archaeology of high mountain regions got high attention since the discovery of the copper age mummy called "Ötzi" in the Ötztaler Alps in 1991. Results of former archaeological research projects show that mesolithic hunter-gatherers lived in Alpine regions since the beginning of the Holocene, 11,700 years ago (Cornelissen & Reitmaier 2016). Amongst others, the Mesolithic site Ullafelsen (1860 m a.s.l.) and surroundings represent a very important archaeological reference site in the Fotsch Valley (Stubaier Alps, Tyrol) (Schäfer 2011). Many archaeological artifacts and fire places were found at different places in the Fotschertal, which provides evidence for the presence and the way of living of our ancestor. The "Mesolithic project Ullafelsen" includes different scientific disciplines ranging from high mountain archaeology over geology, geomorphology, soil science, sedimentology, petrography to palaeobotany (Schäfer 2011). Within an ongoing DFG project we aim at addressing questions related to past vegetation and climate, human history as well as their influence on pedogenesis from a biomarker and stable isotope perspective (cf. Zech et al. 2011). Our results for instance suggest that (i) the dominant recent and past vegetation can be chemotaxonomically differentiated based on leaf wax-derived <em>n</em>-alkane biomarkers, (ii) there is no evidence for buried Late Glacial topsoils being preserved on the Ullafelsen as argued by Geitner et al. (2014), rather humic-rich subsoils were formed as B<sub>h</sub>-horizons by podsolisation and (iii) marked vegetations changes likely associated with alpine pasture activities since the Bronce Age are documented in Holocene peat bogs in the Fotsch Valley. Nevertheless, there remain some challenges by joining all analytical data in order to get a consistent overall picture of human-environmental history of this high mountain region.</p><p>Cornelissen & Reitmaier (2016): Filling the gap: Recent Mesolithic discoveries in the central and south-eastern Swiss Alps. In: Quaternary International, 423.</p><p>Geitner, C., Schäfer, D., Bertola, S., Bussemer, S., Heinrich, K. und J. Waroszewski (2014): Landscape archaeological results and discussion of Mesolithic research in the Fotsch valley (Tyrol). In: Kerschner, H., Krainer, K. and C. Spötl: From the foreland to the Central Alps – Field trips to selected sites of Quaternary research in the Tyrolean and Bavarian Alps (DEUQUA EXCURSIONS), Berlin, 106-115.</p><p>Schäfer (2011): Das Mesolithikum-Projekt Ullafelsen (Teil 1). Mensch und Umwelt im Holozän Tirols (Band 1). 560 p., Innsbruck: Philipp von Zabern.</p><p>Zech, M., Zech, R., Buggle, B., Zöller, L. (2011): Novel methodological approaches in loess research - interrogating biomarkers and compound-specific stable isotopes. In: E&G Quaternary Science Journal, 60.</p>


1987 ◽  
Vol 28 (1) ◽  
pp. 1-37 ◽  
Author(s):  
Svante Björck ◽  
Per Möller

AbstractLate Weichselian litho-, bio-, and chronostratigraphy (14C and varves) in southeastern Sweden provide a detailed picture of the deglaciation pattern and dynamics, shore displacement, late-glacial sedimentation, and history of the landscape, vegetation, and climate. Two plausible glacial models were tested against lithologic, chronologic, and climatic data. Permafrost at and outside the ice margin and topographic conditions beneath the ice apparently caused inward spread of frozen glacier-bed conditions. This led to a buildup of a large zone of debris-rich basal ice. A climatic amelioration about 12,700 yr B.P. changed the temperature profile in the ice sheet. Deposition of basal melt-out till began at the previously frozen glacier bed, and a rapid recession of the clean ice set in; thin exposed debris-rich basal ice which was separated from the active ice margin about 150 yr later. In this zone of stagnant ice there followed a 200– 300-yr period marked by subglacial and supraglacial melt-out and resedimentation, forming a large hummocky/transverse moraine. The mild climate favored rapid plant immigration, and a park-tundra was established. The gradual closing of the landscape was interrupted by a 100- to 150-yr period of tundra vegetation and a cool, dry climate, with local vegetational differences caused by differences in soil moisture. About 12,000 yr B.P. a second climatic amelioration set in, and during the next 1000 yr a birch (and pine) woodland gradually developed. Soils stabilized and Empetrum heaths became abundant as the climate gradually deteriorated at the end of this period. By 11,000 yr B.P. the area had become a tundra again with scattered birch stands, dominated by herbs such as Artemisia, Chenopodiaceae, grasses, and sedges. Some 500 yr later a birch/pine woodland again succeeded, and within about 500 yr the vegetation changed to a rather closed woodland as the climate ameliorated further. However, the time lag between climatic and vegetation change was considerable.


2015 ◽  
Vol 34 (3) ◽  
pp. 101-116 ◽  
Author(s):  
Magdalena Ratajczak-Szczerba ◽  
Iwona Sobkowiak-Tabaka ◽  
Iwona Okuniewska-Nowaczyk

Abstract The region of the Lubusz Lakeland in western Poland where there are a lot of subglacial channels provides opportunity for multi-proxy palaeoenvironmental reconstructions. None of them has not been the object of a specific study. The developmental history of the palaeolakes and their vicinity in the subglacial trough Jordanowo-Niesulice, spanning the Late Glacial and beginning of the Holocene, was investigated using geological research, lithological and geomorphological analysis, geochemical composition, palynological and archaeological research, OSL and AMS-radiocarbon dating. Geological research shows varied morphology of subglacial channel where at least two different reservoirs functioned in the end of the Last Glacial period and at the beginning of the Holocene. Mostly during the Bølling-Allerød interval and at the beginning of the Younger Dryas there took place melting of buried ice-blocks which preserved the analysied course of the Jordanowo-Niesulice trough. The level of water, and especially depth of reservoirs underwent also changes. Palynological analysis shows very diversified course of the Allerød interval.


2002 ◽  
Vol 58 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Ulrich Salzmann ◽  
Philipp Hoelzmann ◽  
Irena Morczinek

AbstractThe Lake Tilla crater lake in northeastern Nigeria (10°23′N, 12°08′E) provides a ca. 17,000 14C yr multiproxy record of the environmental history of a Sudanian savanna in West Africa. Evaluation of pollen, diatoms, and sedimentary geochemistry from cores suggests that dry climatic conditions prevailed throughout the late Pleistocene. Before the onset of the Holocene, the slow rise in lake levels was interrupted by a distinct dry event between ca. 10,900 and 10,500 14C yr B.P., which may coincide with the Younger Dryas episode. The onset of the Holocene is marked by an abrupt increase in lake levels and a subsequent spread of Guinean and Sudanian tree taxa into the open grass savanna that predominated throughout the Late Pleistocene. The dominance of the mountain olive Olea hochstetteri suggests cool climatic conditions prior to ca. 8600 14C yr B.P. The early to mid-Holocene humid period culminated between ca. 8500 and 7000 14C yr B.P. with the establishment of a dense Guinean savanna during high lake levels. Frequent fires were important in promoting the open character of the vegetation. The palynological and palaeolimnological data demonstrate that the humid period terminated after ca. 7000 14C yr B.P. in a gradual decline of the precipitation/evaporation ratio and was not interrupted by abrupt climatic events. The aridification trend intensified after ca. 3800 14C yr B.P. and continued until the present.


1984 ◽  
Vol 21 (6) ◽  
pp. 619-629 ◽  
Author(s):  
Cathy W. Barnosky

A comparison of pollen records and associated plant remains from sites along a major precipitation gradient in southwestern Washington enables reconstruction of the late Quaternary environment during glacial and early Holocene time. During the Evans Creek Stade (25 000 – 17 000 years BP) little moisture reached lowlands east of the Olympic Mountains and as a result both the Puget Trough and the Columbia Basin featured a cold dry climate and parkland–tundra vegetation In glacial time, greatest aridity seems to have occurred between 19 000 and 17 000 years BP. After 17 000 years BP the development of mesophytic subalpine parkland suggests that maritime conditions extended farther east into the Puget Trough, and the Cascade Range became an important precipitation divide. Conditions warmer and (or) drier than today developed throughout western Washington between 10 000 and 8000–6000 years BP. Vegetation on opposite sides of the Cascade Range became dissimilar as early as 17 000 years BP, but this trend was accentuated in late glacial and early Holocene time.


Author(s):  
Nuria Torrescano-Valle ◽  
Gerald A. Islebe ◽  
Priyadarsi D. Roy

Sign in / Sign up

Export Citation Format

Share Document