scholarly journals In vitro Studies of the Effectiveness of Five Plants Extracts Compared to Carbofuran in Controlling the Root Knot Nematode Meloidogyne incognita

Agrosearch ◽  
2011 ◽  
Vol 10 (1-2) ◽  
Author(s):  
RW Ndana ◽  
EEA Oyedunmade
2017 ◽  
Vol 4 (3) ◽  
pp. 1-7 ◽  
Author(s):  
Amir Khan ◽  
Moh Tariq ◽  
Mohd Asif ◽  
Mansoor Siddiqui

Nematology ◽  
2007 ◽  
Vol 9 (3) ◽  
pp. 343-349 ◽  
Author(s):  
Michael Boppré ◽  
Tim Thoden ◽  
Johannes Hallmann

Abstract1,2-dehydropyrrolizidine alkaloids (PAs) represent a class of secondary plant compounds that are active in defence against herbivory. They are present in Chromolaena odorata, one of the most invasive weeds of Asia and Africa. In vitro studies demonstrate that pure PAs from C. odorata roots have nematicidal effects on the root-knot nematode Meloidogyne incognita, even at concentrations of 70-350 ppm. In vivo experiments show that mulch or aqueous crude extracts from C. odorata roots reduce the infection of lettuce by M. incognita. Thus, the use of PA-containing plants appears to be a valuable element for integrated nematode management.


Nematology ◽  
2013 ◽  
Vol 15 (5) ◽  
pp. 545-555 ◽  
Author(s):  
Yong Seong Lee ◽  
Muhammad Anees ◽  
Hae Nam Hyun ◽  
Kil Yong Kim

Lysobacter antibioticus HS124 is an antagonistic bacterial strain that was previously isolated from the rhizosphere soil of pepper and showed an enhanced ability to produce lytic enzymes as well as an antibiotic that was identified as 4-hydroxyphenylacetic acid (4-HPAA). In the present study, nematicidal activity of the strain and 4-HPAA against the root-knot nematode, Meloidogyne incognita, causing disease in tomato was investigated in both in vitro and in vivo conditions. For this purpose, adding different concentrations of culture filtrate, crude extract collected from extraction with ethyl acetate and 4-HPAA, in 24-well plates containing ca 500 eggs or 300 second-stage juveniles (J2), significantly decreased the rate of nematode hatch and caused higher mortality of J2 compared with the control treatments. Nematicidal activity of the bacterial strain was further confirmed by conducting pot experiments in which tomato plants were inoculated with M. incognita and the HS124 culture (BC). The control pots were treated with commercial nematicide (CN, 5% Ethoprophos), tap water (TW) or the non-inoculated bacterial culture medium (BCM). In these pot experiments, results demonstrated a strong antagonistic potential of L. antibioticus HS124 against M. incognita where the disease was significantly reduced in the pots treated with BC as compared to TW or BCM. Furthermore, the shoot fresh weight was also increased significantly, which may be attributed to the disease control ability of the strain. Hence, L. antibioticus HS124 may be further developed as a potential biocontrol of root knot nematode in the field.


2017 ◽  
Vol 14 (1) ◽  
pp. 467-471 ◽  
Author(s):  
Neeraj Neeraj ◽  
S. R. Goel ◽  
Anil Kumar ◽  
Gurpreet Singh ◽  
V. K. Madan

2019 ◽  
Vol 12 (1) ◽  
pp. 24-37
Author(s):  
M.A. Radwan ◽  
A.S.A. Saad ◽  
H.A. Mesbah ◽  
H.S. Ibrahim ◽  
M.S. Khalil

Summary Avermectins and spinosyns are structurally related natural products of microbial origin and belong to a new family of macrolides which are active against a vast array of invertebrate pests. In the present study, the effects of four members of macrolides; abamectin (ABM), emamectin benzoate (EMB), spinosad (SPI) and spinetoram (SPIT), on Meloidogyne incognita were investigated under in vitro and in vivo conditions. All compounds reduced egg hatching and led to high mortality of the nematode second-stage juveniles (J2). ABM showed the maximum rate of egg hatching inhibition and J2 mortality while SPIT recorded the minimum. All treatments reduced the number of galls, egg masses, eggs/egg mass in roots and J2 in the soil when compared to the control. Based on the 10 folds of the 24 h-LC50 values of J2 mortality in vitro, EMB and ABM exhibited higher percent reduction in galls (79.68 and 71.45%), egg masses (75.19 and 70.54%), eggs/egg mass (60.49 and 40.91%) and J2 in the soil (90.31 and 86.54%), respectively, compared to SPI and SPIT. Significant increase in tomato shoot height occurred in all biopesticides (10 folds) and SPIT (20 folds). SPI at 10 folds of the 24 h-LC50 values of J2 mortality in vitro, significantly increased root length while ABM at 50 folds and SPIT at 20 folds decreased root length by 5.15% and 5.88%, respectively, compared to the untreated inoculated plants. In all treatments, the dry shoot and root weights increased, compared to the untreated control. Our findings suggest that these macrolides have the ability to regulate nematode population densities and may be an alternative to classical nematicides.


Marine Drugs ◽  
2020 ◽  
Vol 18 (5) ◽  
pp. 273 ◽  
Author(s):  
Zhaoqian Fan ◽  
Yukun Qin ◽  
Song Liu ◽  
Ronge Xing ◽  
Huahua Yu ◽  
...  

Plant root-knot nematode disease is a great agricultural problem and commercially available nematicides have the disadvantages of high toxicity and limited usage; thus, it is urgent to develop new nematicides derived from nature substances. In this study, a novel fluorinated derivative was synthesized by modifying chitosan oligosaccharide (COS) using the strategy of multiple functions. The derivatives were characterized by FTIR, NMR, elemental analysis, and TG/DTG. The activity assays show that the derivatives can effectively kill the second instar larvae of Meloidogyne incognita in vitro, among them, chitosan-thiadiazole-trifluorobutene (COSSZFB) perform high eggs hatching inhibitory activity. The derivatives can regulate plant growth (photosynthetic pigment), improve immunity (chitinase and β-1,3-glucanase), and show low cytotoxicity and phytotoxicity. According to the multi-functional activity, the derivatives exhibit a good control effect on plant root-knot nematode disease in vivo. The results demonstrate that the COS derivatives (especially fluorinated derivative) perform multiple activities and show the potential to be further evaluated as nematicides.


2012 ◽  
Vol 48 (No. 4) ◽  
pp. 170-178 ◽  
Author(s):  
M.S. Khalil ◽  
M.E.I. Badawy

The nematicidal activity of four molecular weights (2.27 &times; 10<sup>5</sup>, 3.60 &times; 10<sup>5</sup>, 5.97 &times; 10<sup>5</sup>, and 9.47 &times; 10<sup>5</sup> g/mol) of a biopolymer chitosan was assayed against the root-knot nematode, Meloidogyne incognita, in vitro and in pot experiments. In laboratory assays, the nematode mortality was significantly influenced by exposure times and chitosan molecular weight. Low molecular weight chitosan (2.27 &times; 10<sup>5</sup> g/mol) was the most effective in killing the nematode with EC<sub>50</sub> of 283.47 and 124.90 mg/l after 24 and 48 h of treatment, respectively. In a greenhouse bioassay, all the compounds mixed in soil at one- and five-fold concentrations of the LC<sub>50</sub> value significantly reduced population, egg mass, and root galling of tomato seedlings compared with the untreated control. In general, the nematicidal activity of these compounds was increased dramatically with a decrease in the molecular weight. The results suggest that the chitosan at low molecular weight may serve as a natural nematicide


Sign in / Sign up

Export Citation Format

Share Document