scholarly journals A study on the influence of hot press forming process parameters on mechanical properties of green composites using Taguchi experimental design

Author(s):  
GB Kiran ◽  
KNS Suman ◽  
NM Rao ◽  
RUM Rao
Author(s):  
Yang Li ◽  
Yong-Phil Jeon ◽  
Chung-Gil Kang

Bending behavior occurs in the hot press forming process, resulting in many cases of failure during forming. To address the problem of cracking and improve the formability and mechanical properties of boron steel sheets in the bending process, an experiment has been carried out by using a spring compound bending die. Also, a comparison has been made between the traditional U-bending die and the spring compound bending die with regard to formability. The influence of the parameters for hot press forming such as the heating temperature, punch speed, and die radii on the mechanical properties and microstructure was analyzed by tension testing and metallographic observations.


2012 ◽  
Vol 189 ◽  
pp. 250-254
Author(s):  
An Long ◽  
Rui Ge ◽  
Hui Wang ◽  
Yin Chen

To research the problem of part’s dimensional accuracy error easily occurred in hot press forming, a B-Pillar on one domestic car was set as example, the dimensional of the actual part and its model diagram were compared by means of ATOS optical scanner. By recording the the process parameters used in practical production, the effect trend of three key process parameters on part’s dimensional accuracy was summarized, process parameters suitable for practical production were gained.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 827 ◽  
Author(s):  
Fengyong Wu ◽  
Wenchen Xu ◽  
Zhongze Yang ◽  
Bin Guo ◽  
Debin Shan

In order to manufacture complex curvilinear generatrix workpieces of high-temperature titanium alloy, the hot tensile behavior of Ti55 alloy sheet was tested and the hot press forming process was investigated using Finite Element Method (FEM) simulation and experiment. The hot tensile experiments of Ti55 rolled sheet were conducted at the temperatures of 800–900 °C with the strain rates of 0.001–0.1 s−1. According to the results of hot tensile tests and microstructure evolution, the proper hot press forming parameters were determined as the temperature of 850 °C and the strain rates of 0.001–0.01 s−1. The wrinkling mechanism in the transition region was analyzed and the initial blank sheet geometry was optimized by FE simulation of hot press forming. The two-step hot press forming process was better to produce the complex sheet workpiece of Ti55 alloy than the one-step hot forming scheme, which could restrain the wrinkling trend and ensure the microstructure and mechanical properties of the hot formed workpieces.


2010 ◽  
Vol 447-448 ◽  
pp. 760-764 ◽  
Author(s):  
Keiji Ogawa ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Mitsuaki Taniguchi ◽  
Sachiko Ogawa

Bamboo grows faster than other renewable natural materials. Bamboo fiber, in particular, has attracted attention as an environmentally superior material. Therefore, we proposed a sustainable manufacturing system using bamboo. An extraction method of bamboo fibers end-milled using a machining center with in-situ measurement is proposed. Bamboo fibers with high precision shape are efficiently acquired. In the present report, we propose the fabrication of binder-free composite by a hot press forming method that only uses bamboo fibers extracted by a machining center. We experimentally demonstrated various hot press forming conditions and achieved proper forming conditions to optimize the forming process. We also made various three-dimensional shapes considering the practical applications of the formed binder-free bamboo fiber moldings.


Sign in / Sign up

Export Citation Format

Share Document