scholarly journals Chemical reaction in MHD flow past a vertical plate with mass diffusion and constant wall temperature with hall current

2017 ◽  
Vol 8 (4) ◽  
pp. 28 ◽  
Author(s):  
U. S. Rajput ◽  
Neetu Kanaujia
Author(s):  
U. S. Rajput ◽  
Gaurav Kumar

Effects of rotation and chemical reaction on unsteady MHD flow past an impulsively started inclined plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we [7] have studied radiation effect on unsteady MHD flow through porous medium past an oscillating inclined plate with variable temperature and mass diffusion in the presence of Hall current. We obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering rotation and chemical reaction. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Sherwood number have been tabulated. Here too, the results are found to be in agreement with the actual flow.


2014 ◽  
Vol 10 (4) ◽  
pp. 106-121 ◽  
Author(s):  
K. Surya Narayana Reddy ◽  
◽  
M. Sreedhar Babu ◽  
S. Vijaya Kumar Varma ◽  
N. Bhaskar Reddy

2013 ◽  
Vol 18 (1) ◽  
pp. 259-267 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
V. Valliammal

An exact solution of an unsteady flow past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion in the presence of a transverse magnetic field has been studied. The plate temperature is raised to Tw and the species concentration level near the plate is also made to rise Cʹw . The dimensionless governing equations are solved using the Laplace-transform technique. The velocity, temperature and concentration profiles are studied for different physical parameters such as the magnetic field parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, time and a. It is observed that the velocity decreases with increasing the magnetic field parameter.


Sign in / Sign up

Export Citation Format

Share Document