scholarly journals EFFECT OF ALUMINUM DROSS AND RICE HUSK ASH ON THERMAL AND MOULDING PROPERTIES OF SILICA SAND

2017 ◽  
Vol 36 (3) ◽  
pp. 794-800
Author(s):  
EF Ochulor ◽  
HOH Amuda ◽  
SO Adeosun ◽  
SA Balogun

Moulding properties of foundry sand should be controlled so as to minimize casting defects. Its thermal characteristics are vital in defining the solidification kinetics of a cast part,  evolving microstructure and mechanical properties. Modification of the thermal properties of the moulding sand mix is important in achieving desired structure and mechanical properties in the cast component. This study investigates the incorporation of 2-12 wt. % aluminium dross (AlDr) and 1-6 wt. % rice husk ash (RHA) in silica sand on moulding and thermal properties of the resulting sand mix. Results show that RHA significantly reduced thermal conductivity of the moulding sand from 1.631-1.141 W/m. K (a 30% reduction).However, AlDr increased its thermal conductivity from 1.631-1.787 W/m.K for 1-6 wt. % AlDr, which later dropped progressively from 1.753-1.540 W/m.K for 8-12 wt. %. The moisture content increased abruptly from 4.0-4.2 % for 6-8 wt. % AlDr addition but decreased from 4.0-2.8% for0-6 wt. % RHA addition in the moulding sand mix. http://dx.doi.org/10.4314/njt.v36i3.19

2017 ◽  
Vol 751 ◽  
pp. 538-543 ◽  
Author(s):  
Pongsak Jittabut

This research was aimed to a present the physical and thermal properties of geopolymer pastes made of fly ash (FA) and bagasse ash (BA) with rice husk ash (RHA) containing at the doses of 0%, 2%, 4%, 6%, 8% and 10% by weight. The sodium hydroxide concentration of 15 molars, sodium silicate per sodium hydroxide by weight ratio of 2.0, the alkaline liquid per binder at the ratio of 0.60 and curing at ambient temperature were used at the to mix all mixtures to gether for 7 and 28 days. The properties analysis of the geopolymer pastes such as compressive strength, bulk density, water absorption, thermal conductivity, thermal diffusivity and thermal capacity were tested. The results were indicated that geopolymer pastes that containing rice husk ash 2% by weight for 28 days of curing gave the maximum compressive strength of 84.42 kg/cm2, low water absorption of 1.16 %, low bulk density of 2,065.71 kg/cm3, lower thermal conductivity of 1.1173 W/m.K, lower thermal diffusion of 6.643 µm2/s and lower thermal capacity of 1.6819 MJ/m3K, respectively. The utilization of waste from agriculture industry via geopolymer pastes for green building materials can be achieved. For this research, physical properties and thermal insulation of geopolymer pastes were siqnificantly improved.


2020 ◽  
Vol 25 (3) ◽  
Author(s):  
Débora Silva ◽  
Eduardo Pachla ◽  
Ederli Marangon ◽  
Marco Tier ◽  
Ana Paula Garcia

ABSTRACT The main objective of this work was to evaluate the effects of rice husk ash and wollastonite microfibers incorporation, added per clay partial substituition, on physical and thermal properties of refractory ceramic composites. The raw materials characterization occurred with respect to their chemical composition (XRF), phase composition (XRD) and granulometry by laser. The composites were avaluated by physical properties - apparent porosity, bulk density, water absorption, linear retraction after sinterization and mass variation - and thermal properties - thermal conductivity and thermal shock. The rice husk ash used in the present work proved to have potential as a ceramic precursor in the development of refractories. The clay substitution per ash and the microfiber different percentages resulted in an increase in water absorption and apparent porosity and a reduction in the linear retraction. The increase in porosity suggests that the mullitization was insufficient. Regarding the thermal performance, the thermal conductivity was inversely proportional to the porosity and the microfiber percentage. In addition, the higher the thermal-shock temperature gradient the lower was the number of cycles resisted by the composites.


2015 ◽  
Vol 57 (4) ◽  
pp. 370-376 ◽  
Author(s):  
Ahmad Adlie Shamsuri ◽  
Ahmad Khuzairi Sudari ◽  
Edi Syams Zainudin ◽  
Mazlina Ghazali

Author(s):  
Md. Rahat Hossain ◽  
Md. Hasan Ali ◽  
Md. Al Amin ◽  
Md. Golam Kibria ◽  
Md. Shafiul Ferdous

Aluminium matrix composites (AMCs) used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs) such as aluminium alloy (A356) reinforced with rice husk ash particles (RHA) are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356) reinforced with various amounts of (2%, 4%, and 6%) rice husk ash (RHA) particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA) and aluminium matrix composites (AMCs). In future, the optimum percentages of rice husk ash (RHA) to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM) will be applied for further investigation.


Sign in / Sign up

Export Citation Format

Share Document