scholarly journals Molecular characterization of duck plague virus from selected Haor areas of Bangladesh

2021 ◽  
Vol 11 (1) ◽  
pp. 42-51
Author(s):  
Kamrul Ahmed Khan ◽  
Md. Alimul Islam ◽  
Abdullah Al Momen Sabuj ◽  
Md. Abul Bashar ◽  
Md. Saiful Islam ◽  
...  

Background: Duck viral enteritis, commonly known as duck plague (DP), is an acute and contagious fatal disease in ducks, geese, and swans caused by the DP virus (DPV). It poses a serious threat to the growth of duck farming in the Haor (wetland) areas of Bangladesh. Aim: This study aimed to detect the circulating DPV by molecular characterization, followed by phylogenetic analysis, targeting the UL30 gene in infected ducks from five Haor districts in Bangladesh and to observe the variation in the genome sequence between the field virus and vaccine strain of DPV. Methods: A total of 150 samples (liver, 50; intestine, 50; and oropharyngeal tissue, 50) were collected from DP-suspected sick/dead ducks from 50 affected farms in Kishoreganj, Netrokona, B. Baria, Habiganj, and Sunamganj districts in Bangladesh. For the identification of DPV in collected samples, polymerase chain reaction (PCR) was utilized. Nucleotide sequences of the amplified UL30 gene were compared with those of other DPV strains available in GenBank. Results: Of the 150 samples, 90 (60%) were found to be positive for DPV, as confirmed by PCR. Organ-wise prevalence was higher in the liver (72%), followed by the intestine (64%) and oropharyngeal tissue (44%). Regarding areas, the highest and lowest prevalence in the liver and intestine was observed in Habiganj and B. Baria, respectively, whereas the highest and lowest prevalence in the oropharyngeal tissue was observed in B. Baria and Habiganj, respectively. Two isolates, BAU/KA/DPV(B1)/2014 from Kishoreganj and BAU/KA/DPV(B4)/2014 from Sunamganj were sequenced, and phylogenetic analysis revealed that these isolates are evolutionarily closely related to Chinese isolates of DPV. Additionally, the isolates of DPV BAU/KA/DPV(B1)/2014 and BAU/KA/DPV(B4)/2014 showed the highest (98%) similarity to each other. The nucleotide sequence of the isolate BAU/KA/DPV(B1)/2014 exhibited higher nucleotide variability (246 nucleotides) than that of the vaccine strain (accession no. EU082088), which may affect protein function and additional drug sensitivity. Conclusion: Based on the findings of the molecular study, it can be assumed that the Bangladeshi isolates and all Chinese isolates of DPV may have a common ancestry.

2020 ◽  
Vol 40 (04) ◽  
pp. 443-448
Author(s):  
Sayyed Raza Ali Shahid

The aim of this study was to investigate the molecular characterization and phylogenetic analysis of microneme gene 5 of Eimeria tenella (EtMic5) from Pakistan to confirm its evolutionary relationship among different Eimeria species. Birds were reared and infected with Eimeria tenella oocysts. Postmortem of birds revealed the presence of lesions within intestinal caeca. Oocysts were collected, sporulated and used for RNA extraction. RNA was converted to cDNA and analyzed for EtMic5 gene using polymerase chain reaction (PCR). PCR products were confirmed through gel electrophoresis and the samples positive for EtMic5 gene were cleared using PCR cleanup process. EtMic5 gene was partially sequenced from Macrogen® laboratory Korea. Phylogenetic analysis revealed that the sequence is similar to all those previously reported in other parts of the world. The nucleotide sequence was deposited in GenBank and the assigned accession number is MT684461. The outcomes of this investigation indicate the presence of high frequency of Eimeria tenella infection in Pakistan


2020 ◽  
Vol 141 ◽  
pp. 39-46
Author(s):  
MD Dorjievna Batueva ◽  
X Pan ◽  
J Zhang ◽  
X Liu ◽  
W Wei ◽  
...  

In the present study, we provide supplementary data for Myxidium cf. rhodei Léger, 1905 based on morphological, histological and molecular characterization. M. cf. rhodei was observed in the kidneys of 918 out of 942 (97%) roach Rutilus rutilus (Linnaeus, 1758). Myxospores of M. cf. rhodei were fusiform with pointed ends, measuring 12.7 ± 0.1 SD (11.8-13.4) µm in length and 4.6 ± 0.1 (3.8-5.4) µm in width. Two similar pear-shaped polar capsules were positioned at either ends of the longitudinal axis of the myxospore: each of these capsules measured 4.0 ± 0.1 (3.1-4.7) µm in length and 2.8 ± 0.1 (2.0-4.0) µm in width. Polar filaments were coiled into 4 to 5 turns. Approximately 18-20 longitudinal straight ridges were observed on the myxospore surface. The suture line was straight and distinctive, running near the middle of the valves. Histologically, the plasmodia of the present species were found in the Bowman’s capsules, and rarely in the interstitium of the host. Phylogenetic analysis revealed that M. cf. rhodei was sister to M. anatidum in the Myxidium clade including most Myxidium species from freshwater hosts.


2000 ◽  
Vol 75 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Cesar A.D Pereira ◽  
Telma A Monezi ◽  
Dolores U Mehnert ◽  
Magali D’Angelo ◽  
Edison L Durigon

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258318
Author(s):  
Marta Antas ◽  
Monika Olech ◽  
Anna Szczotka-Bochniarz

Porcine epidemic diarrhoea (PED) is a highly contagious enteric viral disease of pigs with a high morbidity and mortality rate, which ultimately results in huge economic losses in the pig production sector. The etiological agent of this disease is the porcine epidemic diarrhoea virus (PEDV) which is an enveloped, positive single-stranded RNA virus. The aim of this study was to perform molecular characterization of PEDV to identify the strains circulating in Poland. In this study, 662 faecal samples from 2015 to 2021 were tested with reverse transcription quantitative real-time PCR (RT-qPCR) and the results showed that 3.8% of the tested samples revealed a positive result for PEDV. A phylogenetic analysis of the complete genome and complete S gene sequences showed that Polish PEDV strains belonged to the G1b (S-INDEL) subgroup and were closely related to the European PEDV strains isolated from 2014 to 2019. Furthermore, RDP4 analysis revealed that the Polish PEDV strains harboured a recombinant fragment of ~400 nt in the 5’ end of S gene with PEDV and swine enteric coronavirus (SeCoV) being the major and minor parents, respectively. Antigenic analysis showed that the aa sequences of neutralizing epitopes were conserved among the Polish PEDV strains. Only one strain, #0100/5P, had a unique substitution in the COE epitope. However, Polish PEDV strains showed several substitutions, especially in the COE antigen, as compared to the classical strain CV777. To the best of our knowledge, this is the first report concerning the molecular characterization of porcine epidemic diarrhoea virus strains, as well as the first phylogenetic analysis for PEDV in Poland.


2021 ◽  
Vol 8 (12) ◽  
pp. 304
Author(s):  
Ivana Piredda ◽  
Loris Bertoldi ◽  
Giuseppe Benvenuto ◽  
Bruna Palmas ◽  
Aureliana Pedditzi ◽  
...  

Aim of this study was to evaluate, the presence and diversity of Leptospira spp. in blood and urine samples collected from 175 owned-dogs from Sardinia, Italy. After determination of leptospiral infection by microscopic agglutination test (MAT), urine from MAT-positive dogs were examined by real-time polymerase chain reaction (lipL32 rt-PCR) and then isolated by culture. In order to characterize obtained serovars, positive cultures were then subjected to 16S rRNA and secY sequencing, phylogenetic analysis and Multilocus Sequence Typing (MLST). Results showed that seven dogs (4%; 95% CI: 0–55) had Leptospira DNAs in their urine and five strains were isolated from urine cultures. The three different sequence types (ST17, ST198 and ST24) belonging to Leptospira interrogans genomospecies identified by MLST analyses in this study, confirmed that the leptospiral infection was widespread in Sardinian dogs. We also reported the first characterization of a new Leptospira spp. isolated from urine of one dog living in the study area. Whole genome sequencing and phylogenetic analysis, confirmed that this genospecies was closely related to Leptospira hovindhougenii, an intermediate Leptospira spp. with unknown pathogenicity previously isolated from a rat in Denmark. Further studies are required to clarify whether healthy dogs that shed leptospires in their urine could represent a zoonotic risk for humans in this region.


2021 ◽  
Vol 102 (4) ◽  
Author(s):  
Takeshi Tsugawa ◽  
Yoshiki Fujii ◽  
Yusuke Akane ◽  
Saho Honjo ◽  
Kenji Kondo ◽  
...  

Group A rotaviruses (RVAs) infect a wide variety of mammalian and avian species. Animals act as a potential reservoir to RVA human infections by direct virion transmission or by contributing genes to reassortants. Here, we report the molecular characterization of a rare human RVA strain Ni17-46 with a genotype G15P[14], isolated in Japan in 2017 during rotavirus surveillance in a paediatric outpatient clinic. The genome constellation of this strain was G15-P[14]-I2-R2-C2-M2-A13-N2-T9-E2-H3. This is the first report of an RVA with G15 genotype in humans, and sequencing and phylogenetic analysis results suggest that human infection with this strain has zoonotic origin from the bovine species. Given the fact that this strain was isolated from a patient with gastroenteritis and dehydration symptoms, we must take into account the virulence of this strain in humans.


Sign in / Sign up

Export Citation Format

Share Document