Aging-Induced Changes in Populations of Lactococci, Lactobacilli, and Aerobic Microorganisms in Low-Fat and Full-Fat Cheddar Cheese†

1997 ◽  
Vol 60 (9) ◽  
pp. 1095-1098 ◽  
Author(s):  
Z. U. HAQUE ◽  
E. KUCUKONER ◽  
K. J. ARYANA

The objective of this study was to observe the impact of lowering fat content on the microflora of Cheddar cheese. Full-fat (32%) and low-fat (5%) Cheddar cheeses were produced and evaluated one day after manufacture and at monthly intervals for 5 months. The cheeses were aged at 4°C after being dipped in mold inhibitor and vacuum packed in high-density polythene bags. Standard plate counts and counts of lactococci and lactobacilli were performed. Transmission and scanning electron microscopy of the microflora were also conducted. The lactococci decreased gradually over the ripening period, while the lactobacilli, though not knowingly added during Cheddar cheese preparation, increased concomitantly. Transmission electron microscopic observations revealed affinity of lactococci for the fat phase in aged cheese.

Author(s):  
J. W. Horn ◽  
B. J. Dovey-Hartman ◽  
V. P. Meador

Osmium tetroxide (OsO4) is a universally used secondary fixative for routine transmission electron microscopic evaluation of biological specimens. Use of OsO4 results in good ultrastructural preservation and electron density but several factors, such as concentration, length of exposure, and temperature, impact overall results. Potassium ferricyanide, an additive used primarily in combination with OsO4, has mainly been used to enhance the contrast of lipids, glycogen, cell membranes, and membranous organelles. The purpose of this project was to compare the secondary fixative solutions, OsO4 vs. OsO4 with potassium ferricyanide, and secondary fixative temperature for determining which combination gives optimal ultrastructural fixation and enhanced organelle staining/contrast.Fresh rat liver samples were diced to ∼1 mm3 blocks, placed into porous processing capsules/baskets, preserved in buffered 2% formaldehyde/2.5% glutaraldehyde solution, and rinsed with 0.12 M cacodylate buffer (pH 7.2). Tissue processing capsules were separated (3 capsules/secondary fixative.solution) and secondarily fixed (table) for 90 minutes. Tissues were buffer rinsed, dehydrated with ascending concentrations of ethanol solutions, infiltrated, and embedded in epoxy resin.


1999 ◽  
Vol 14 (2) ◽  
pp. 371-376 ◽  
Author(s):  
Yoshitaka Nakano ◽  
Jiro Sakata ◽  
Yasunori Taga

A systematic investigation has been made on surface defect states of crystallites in the crystallization process of sputtered amorphous silicon films by isothermal annealing. Transmission electron microscopic observations indicate a pronounced vertical columnar structure in the upper part of the films, where the crystallization is delayed. Admittance spectroscopy reveals that two newly generated energy levels with the crystallization are attributed to the crystallites in the lower and upper parts of the films in view of the anisotropic crystallization. These thermally induced changes can be well explained by Si–Si shearing modes at the interfaces of crystallites through the process of crystallization.


1982 ◽  
Vol 14 (3) ◽  
pp. 205-217 ◽  
Author(s):  
Rosmarie Honegger

AbstractOn the basis of light microscopic (LM), scanning electron microscopic (SEM) and transmission electron microscopic (TEM) investigations the Pertusaria-type of ascus is described as a particular functional type. The functionally unitunicate Pertusaria-type is characterized by its structure, staining properties, and by its particular mode of dehiscence. Tripartite ascus walls were observed in LM and TEM. The non-amyloid ascus wall is surrounded by a thin, amyloid outer layer. Both become amorphous at maturity and partly disintegrate. An apically thickened, amyloid inner layer reaches the base of the ascus. In its fine structure this amyloid inner layer resembles the material of the amyloid dome of Lecanora-type asci. It plays an important role during dehiscence and spore discharge. An elongation process was observed prior to dehiscence, at the end of which the ascus tip is situated above the hymenial surface. Dehiscence occurs by bursting or splitting of the whole ascus tip. The Pertusaria-type might represent a side-branch of evolution from bitunicate to unitunicate forms within the Lecanorales.Pertusaria-type asci are restricted to a small number of genera within the Pertusariaceae. A considerable heterogeneity in ascus structure and staining properties was observed within the Pertusariineae sensu Henssen & Jahns (1973) and Henssen (1976).


Author(s):  
Loren Anderson ◽  
Pat Pizzo ◽  
Glen Haydon

Transmission electron microscopy of replicas has long been used to study the fracture surfaces of components which fail in service. Recently, the scanning electron microscope (SEM) has gained popularity because it allows direct examination of the fracture surface. However, the somewhat lower resolution of the SEM coupled with a restriction on the sample size has served to limit the use of this instrument in investigating in-service failures. It is the intent of this paper to show that scanning electron microscopic examination of conventional negative replicas can be a convenient and reliable technique for determining mode of failure.


Author(s):  
Veronika Burmeister ◽  
R. Swaminathan

Porphyria cutanea tarda (PCT) is a disorder of porphyrin metabolism which occurs most often during middle age. The disease is characterized by excessive production of uroporphyrin which causes photosensitivity and skin eruptions on hands and arms, due to minor trauma and exposure to sunlight. The pathology of the blister is well known, being subepidermal with epidermodermal separation, it is not always absolutely clear, whether the basal lamina is attached to the epidermis or the dermis. The purpose of our investigation was to study the attachment of the basement membrane in the blister by comparing scanning with transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document