Use of MIDI–Fatty Acid Methyl Ester Analysis To Monitor the Transmission of Campylobacter during Commercial Poultry Processing

2004 ◽  
Vol 67 (8) ◽  
pp. 1610-1616 ◽  
Author(s):  
ARTHUR HINTON ◽  
J. A. CASON ◽  
MICHAEL E. HUME ◽  
KIMBERLY D. INGRAM

The presence of Campylobacter spp. on broiler carcasses and in scald water taken from a commercial poultry processing facility was monitored on a monthly basis from January through June. Campylobacter agar, Blaser, was used to enumerate Campylobacter in water samples from a multiple-tank scalder; on prescalded, picked, eviscerated, and chilled carcasses; and on processed carcasses stored at 4°C for 7 or 14 days. The MIDI Sherlock microbial identification system was used to identify Campylobacter-like isolates based on the fatty acid methyl ester profile of the bacteria. The dendrogram program of the Sherlock microbial identification system was used to compare the fatty acid methyl ester profiles of the bacteria and determine the degree of relatedness between the isolates. Findings indicated that no Campylobacter were recovered from carcasses or scald tank water samples collected in January or February, but the pathogen was recovered from samples collected in March, April, May, and June. Processing generally produced a significant (P < 0.05) decrease in the number of Campylobacter recovered from broiler carcasses, and the number of Campylobacter recovered from refrigerated carcasses generally decreased during storage. Significantly (P < 0.05) fewer Campylobacter were recovered from the final tank of the multiple-tank scald system than from the first tank. MIDI similarity index values ranged from 0.104 to 0.928 based on MIDI–fatty acid methyl ester analysis of Campylobacter jejuni and Campylobacter coli isolates. Dendrograms of the fatty acid methyl ester profile of the isolates indicated that poultry flocks may introduce several strains of C. jejuni and C. coli into processing plants. Different populations of the pathogen may be carried into the processing plant by successive broiler flocks, and the same Campylobacter strain may be recovered from different poultry processing operations. However, Campylobacter apparently is unable to colonize equipment in the processing facility and contaminate broilers from flocks processed at later dates in the facility.

2000 ◽  
Vol 38 (10) ◽  
pp. 3696-3704 ◽  
Author(s):  
Heidrun Peltroche-Llacsahuanga ◽  
Silke Schmidt ◽  
Michael Seibold ◽  
Rudolf Lütticken ◽  
Gerhard Haase

Candida dubliniensis is often found in mixed culture with C. albicans, but its recognition is hampered as the color of its colonies in primary culture on CHROMagar Candida varies. Furthermore, definite identification of C. dubliniensis is difficult to achieve, time-consuming, and expensive. Therefore, a method to discriminate between these two closely related yeast species by fatty acid methyl ester (FAME) analysis using gas-liquid chromatography (Sherlock Microbial Identification System [MIS]; MIDI, Inc., Newark, Del.) was developed. Although the chromatograms of these two species revealed no obvious differences when applying FAME analysis, a new library (CADLIB) was successfully created using Sherlock Library Generation Software (MIDI). The amount and frequency of FAME was analyzed using library training files (n = 10 for each species), preferentially those comprising reference strains. For testing the performance of the CADLIB, clinical isolates genetically assigned to the respective species (C. albicans, n = 32; C. dubliniensis, n = 28) were chromatographically analyzed. For each isolate tested, MIS computed a similarity index (SI) indicating a hierarchy of possible strain fits. When using the newly created library CADLIB, the SIs for C. albicans andC. dubliniensis ranged from 0.11 to 0.96 and 0.53 to 0.93 (for all but one), respectively. Only three isolates of C. albicans (9.4%) were misidentified as C. dubliniensis, whereas all isolates of C. dubliniensiswere correctly identified. Resulting differentiation accuracy was 90.6% for C. albicans and 100% for C. dubliniensis. Cluster analysis and principal component analysis of the resulting FAME profiles showed two clearly distinguishable clusters matching up with two assigned species for the strains tested. Thus, the created library proved to be well suited to discriminate between these two species.


2002 ◽  
Vol 65 (6) ◽  
pp. 993-998 ◽  
Author(s):  
ARTHUR HINTON ◽  
J. A. CASON ◽  
KIMBERLY D. INGRAM

Yeasts associated with broiler carcasses taken from various stages of commercial poultry processing operations and broiler carcasses stored at refrigerated temperatures were enumerated and identified. Whole carcass rinses were performed to recover yeasts from carcasses taken from a processing facility and processed carcasses stored at 4°C for up to 14 days. Yeasts in the carcass rinsates were enumerated on acidified potato dextrose agar and identified with the MIDI Sherlock Microbial Identification System. Dendrograms of fatty acid profiles of yeast were prepared to determine the degree of relatedness of the yeast isolates. Findings indicated that as the carcasses are moved through the processing line, significant decreases in the number of yeasts associated with broiler carcasses usually occur, and the composition of the yeast flora of the carcasses is altered. Significant (P < 0.05) increases in the yeast population of the carcasses generally occur during storage at 4°C, however. Furthermore, it was determined that the same strain of yeast may be recovered from different carcasses at different points in the processing line and that the same strain of yeast may be isolated from carcasses processed on different days in the same processing facility.


2013 ◽  
Author(s):  
Jr Morris ◽  
Shardo Robert W. ◽  
Higgins James ◽  
Cook Kim ◽  
Tanner Rhonda ◽  
...  

2003 ◽  
Vol 31 (2) ◽  
pp. 133-140 ◽  
Author(s):  
A Ozbek ◽  
O Aktas

The cellular fatty acid profiles of 67 strains belonging to three different species of the genus Mycobacterium were determined by gas chromatography of the fatty acid methyl esters, using the MIDI Sherlock® Microbial Identification System (MIS). The species M. tuberculosis, M. xenopi and M. avium complex were clearly distinguishable and could be identified based on the presence and concentrations of 12 fatty acids: 14:0, 15:0, 16:1ω7c, 16:1ω6c, 16:0, 17:0, 18:2ω6,9c, 18:1ω9c, 18:0, 10Me-18:0 tuberculostearic acid, alcohol and cyclopropane. Fatty acid analysis showed that there is great homogeneity within and heterogeneity between Mycobacterium species. Thus the MIS is an accurate, efficient and relatively rapid method for the identification of mycobacteria.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0121697 ◽  
Author(s):  
Kirk J. Grubbs ◽  
Jarrod J. Scott ◽  
Kevin J. Budsberg ◽  
Harry Read ◽  
Teri C. Balser ◽  
...  

2017 ◽  
Vol 410 (19) ◽  
pp. 4633-4643 ◽  
Author(s):  
Mohsen Talebi ◽  
Rahul A. Patil ◽  
Leonard M. Sidisky ◽  
Alain Berthod ◽  
Daniel W. Armstrong

Sign in / Sign up

Export Citation Format

Share Document