scholarly journals Effects of Modified Atmosphere Packaging on Toxin Production by Clostridium botulinum in Raw Aquacultured Summer Flounder Fillets (Paralichthys dentatus)

2007 ◽  
Vol 70 (5) ◽  
pp. 1159-1164 ◽  
Author(s):  
FLETCHER M. ARRITT ◽  
JOSEPH D. EIFERT ◽  
MICHAEL L. JAHNCKE ◽  
MERLE D. PIERSON ◽  
ROBERT C. WILLIAMS

Packaging fishery products under vacuum atmosphere packaging (VAC) and modified atmosphere packaging (MAP) conditions can significantly extend the shelf life of raw, refrigerated fish products. There is considerable commercial interest in marketing VAC and MAP refrigerated (never frozen) raw fish fillets. The objective of this study was to determine if Clostridium botulinum toxin development precedes microbiological spoilage in raw, refrigerated flounder fillets. Aquacultured flounder (Paralichthys dentatus) individual fish fillets either were packed with a film having an oxygen transmission rate (OTR) of 3,000 cm3 m−2 24 h−1 at 22.8°C or were vacuum packaged or packaged under 100% CO2 with a film having an OTR of 7.8 cm3 m−2 24 h−1 at 21.1°C and were stored at 4 and 10°C. Samples were analyzed by aerobic plate count (APC) for spoilage and qualitatively for botulinum toxin with a mouse bioassay. The results demonstrate that flounder fillets (4°C) packaged with a film having an OTR of 3,000 were microbiologically spoiled (APC, >107 CFU/g) on day 15, but there was no toxin formation, even after 35 days of storage. However, at 10°C, toxin production occurred (day 8), but it was after microbial spoilage and absolute sensory rejection (day 5). Vacuum-packaged fillets and 100% CO2 fillets (4°C) packaged with a film having an OTR of 7.8 were toxic on days 20 and 25, respectively, with microbial spoilage (APC, >107 CFU/g) not occurring during the tested storage period (i.e., >35 days). At 10°C, in vacuum-packaged flounder, toxin formation coincided with microbiological spoilage (days 8 to 9). In the 100% CO2-packaged fillets, toxin formation occurred on day 9, with microbial spoilage occurring on day 15. This study indicates that films with an OTR of 3,000 can be used for refrigerated fish fillets and still maintain the safety of the product.

2017 ◽  
Vol 80 (8) ◽  
pp. 1252-1258 ◽  
Author(s):  
Max C. Golden ◽  
Brandon J. Wanless ◽  
Jairus R. D. David ◽  
D. Scott Lineback ◽  
Ryan J. Talley ◽  
...  

ABSTRACT Clostridium botulinum is a foreseeable biological hazard in prepared refrigerated meals that needs to be addressed in food safety plans. The objective of this study was to evaluate the effect of product composition and storage temperature on the inhibition of botulinum toxin formation in nine experimental meals (meat, vegetable, or carbohydrate based). Treatments were inoculated with proteolytic C. botulinum, vacuum packaged, cooked at 90°C for 10 min, and assayed for botulinum toxin in samples stored at 25°C for up to 96 h for phase 1, or at 25°C for 12 h and then transferred to 12.5°C for up to 12 and 6 weeks in phases 1 and 2, respectively. For phase 1, none of the treatments (equilibrated pH 5.8) supported toxin production when stored at 25°C for 48 h, but toxin production was observed in all treatments at 72 h. For the remaining experiments with storage at 12.5°C, toxin production was dependent on equilibrated pH, storage time, and growth of indigenous spoilage microorganisms. In phase 1, no gross spoilage and no botulinum toxin was detected for any treatment (pH ≤5.8) stored at 12.5°C for 12 weeks. In phase 2, gross spoilage varied by commodity, with the brussels sprouts meal with pH 6.5 showing the most rapid spoilage within 2 weeks and botulinum toxin detected at 5 and 6 weeks for the control and cultured celery juice treatments, respectively. In contrast, spoilage microbes decreased the pH of a pH 5.9 beef treatment by 1.0 unit, potentially inhibiting C. botulinum through 6 weeks at 12.5°C. None of the other treatments with pH 5.8 or below supported toxin production or spoilage. This study provides validation for preventive controls in refrigerated meals. These include equilibrated product pH and storage temperature and time to inhibit toxin formation by proteolytic C. botulinum, but the impact of indigenous microflora on safety and interpretation of challenge studies is also highlighted.


1995 ◽  
Vol 58 (6) ◽  
pp. 624-627 ◽  
Author(s):  
RUTH L. PETRAN ◽  
WILLIAM H. SPERBER ◽  
ARTHUR B. DAVIS

The potential for growth and toxin production by Clostridium botulinum spores was investigated in samples of fresh-cut romaine lettuce and shredded cabbage packaged in vented and nonvented flexible pouches at storage temperatures of 4.4, 12.7, and 21°C for up to 28 days. One hundred grams of cut, washed romaine lettuce and cabbage were placed in polyester bags. Approximately 104 heat-shocked spores were added per package. Before sealing, half the packages were vented. No toxin was detected with either storage method at 4.4 and 12.7°C. In nonvented pouches of romaine lettuce at 21°C, spores grew and produced toxin after 14 days. Romaine samples at 21°C in vented pouches became toxic after 21 days, indicating formation of anaerobic microenvironments within the pouches. In nonvented packages of cabbage at 21°C, toxin was detected after 7 days. All toxin-positive samples were judged to be inedible prior to toxin detection.


1997 ◽  
Vol 60 (11) ◽  
pp. 1358-1363 ◽  
Author(s):  
PING CAI ◽  
MARK A. HARRISON ◽  
YAO-WEN HUANG ◽  
JUAN L. SILVA

Channel catfish were inoculated with 3 to 4 log spores/g of a mixed pool of four strains of C. botulinum type E (Beluga, Minnesota, G21-5, and 070) and were packaged with an oxygen-permeable overwrap, in an oxygen-barrier bag with a modified atmosphere of CO2-N2 (80:20) or in a master bag with the same modified atmosphere. Packaged fish were stored at either 4°C and sampled at intervals over 30 days or at 10°C and sampled at intervals over 12 days. An additional master bag treatment in which overwrap-packaged catfish was stored first at 4°C, then removed from the master bags and stored at 10°C, was sampled at intervals over 18 days. Toxin production was evaluated using the mouse bioassay. Aerobic psychrotrophic and anaerobic populations were enumerated, and product spoilage characteristics were noted. Under abusive storage conditions of 10°C, there was no difference among the potential for toxin production in the packaged fish, with botulinum toxin detected on fish from each package type by day 6. At 4°C, toxin production was detected on day 9 in the overwrapped packages, while it was on day 18 in the modified atmosphere packaging. No toxin was found in the master bags held continually at 4°C. Toxin was detected on day 18 from samples initially held at 4°C in the master bag and subsequently held at 10°C. Spoilage preceded toxin production for samples stored at 4°C for each type of packaging. At 10°C, spoilage and toxin detection times coincided.


1990 ◽  
Vol 53 (12) ◽  
pp. 1025-1032 ◽  
Author(s):  
HIROYUKI IMAI ◽  
KATSUNORI OSHITA ◽  
HIKOTAKA HASHIMOTO ◽  
DANJI FUKUSHIMA

The objective of this study was to evaluate the safety of five different “tsuyu” (Japanese noodle soups) and the effects of incubation temperature, salt concentration, and pH by pursuing the fate of Clostridium botulinum types A and B spores inoculated into them. C. botulinum did not produce toxin in three concentrated types (pH 5.0–5.3, NaCl 8–12%) of “tsuyu” within 3 months at 30°C and in two ready-to-use types (pH 4.83–4.92, NaCl 3.95–4.05) within 6 months at 20 and 30°C. In addition to the “tsuyu” products, positive controls of ready-to-use “tsuyu” with pH-salt combinations adjusted with a sterile NaOH solution to pH 7.0, 6.5, 6.0, and 5.5 and diluted with sterile distilled water to 3, 2, and 1% salt concentrations were included in this study. Growth and toxin production by C. botulinum in positive controls were dependent upon incubation temperature, pH, and salt concentration. That is, no botulinum toxin would occur in “tsuyu” with 4% salt at pH below 6.5 at 20°C; with 1% salt at pH below 5.0 at 30°C; 2 or 3% salt at pH below 5.5 at 30°C; 4% salt at pH below 6.0 incubated at 30°C, even if contaminated with the spores.


2017 ◽  
Vol 80 (8) ◽  
pp. 1259-1265 ◽  
Author(s):  
Max C. Golden ◽  
Brandon J. Wanless ◽  
Jairus R. D. David ◽  
Bala Kottapalli ◽  
D. Scott Lineback ◽  
...  

ABSTRACTClostridium botulinum may be of concern in prepared refrigerated meals, for which strict cold chain management cannot be guaranteed. This study evaluated the effect of temperature, product composition, and cultured celery juice powder (CCJP) as a source of nitrite on the inhibition of botulinum toxin formation in two experimental (meat- and vegetable-based) prepared meals. Data obtained from the challenge study were compared with a published mathematical model to determine whether the model is fail-safe with regard to the tested meals. Treatments were inoculated with proteolytic C. botulinum, vacuum packaged, cooked at 90°C for 10 min, and assayed for botulinum toxin at appropriate intervals in samples stored at 10, 15, or 20°C for up to 8 weeks. None of the treatments stored at 10°C for 8 weeks supported toxin production by proteolytic C. botulinum. The addition of CCJP delayed toxin production by 1 and 3 weeks in cauliflower potatoes and in Dijon pork, respectively, stored at 15°C. Toxin production was delayed by 1 week at 20°C when CCJP was added to the cauliflower potatoes. This study found that the predictive model was fail-safe but was overly conservative for the experimental meals described. Finally, this study confirms that product composition, the addition of nitrite via CCJP, storage time, and temperature play important roles in the inhibition of toxin formation by proteolytic C. botulinum.


2012 ◽  
Vol 75 (6) ◽  
pp. 1157-1166 ◽  
Author(s):  
C. R. NEWELL ◽  
LI MA ◽  
MICHAEL DOYLE

A series of botulism challenge studies were performed to determine the possibility of production of botulinum toxin in mussels (Mytilus edulis) held under a commercial high-oxygen (60 to 65% O2), modified atmosphere packaging (MAP) condition. Spore mixtures of six strains of nonproteolytic Clostridium botulinum were introduced into mussel MAP packages receiving different packaging buffers with or without the addition of lactic acid bacteria. Dye studies and package flipping trials were conducted to ensure internalization of spores by packed mussels. Inoculated mussel packages were stored at normal (4°C) and abusive (12°C) temperatures for 21 and 13 days, respectively, which were beyond the packaged mussels' intended shelf life. Microbiological and chemical analyses were conducted at predetermined intervals (a total of five sampling times at each temperature), including total aerobic plate counts, C. botulinum counts, lactic acid bacterial counts, package headspace gas composition, pH of packaging buffer and mussel meat, and botulinum toxin assays of packaging buffer and mussel meat. Results revealed that C. botulinum inoculated in fresh mussels packed under MAP packaging did not produce toxin, even at an abusive storage temperature and when held beyond their shelf life. No evidence was found that packaging buffers or gas composition influenced the lack of botulinum toxin production in packed mussels.


1991 ◽  
Vol 54 (2) ◽  
pp. 94-101 ◽  
Author(s):  
ANNE D. LAMBERT ◽  
JAMES P. SMITH ◽  
KAREN L. DODDS

The combined effect of three initial levels of oxygen (0, 10, and 20%), irradiation dose (0, 0.5, and 1 kGy), and storage temperature (5, 15, and 25°C) on toxin production by Clostridium botulinum in inoculated modified atmosphere packaged pork were investigated using factorial design experiments. Toxin was detected after only 2 d in all treatments stored at 25°C. At 15°C, irradiated and nonirradiated product packaged with 10 or 20% headspace oxygen were toxic after 14 d. For product packaged with 0% oxygen and an oxygen absorbent, toxin was detected after 21 d in nonirradiated samples compared to 43 d for product treated with an irradiation dose of 1 kGy. No toxin was detected in any product stored at 5°C, even after 44 d. Headspace oxygen in product initially packaged with 20% oxygen decreased to 0.1% after 14 d at 15°C and to ≤3% after 5 d at 25°C, with a concomitant increase in package headspace CO2 to 25–40%. For product packaged with 0% O2 and an oxygen absorbent, oxygen remained at ≤2% throughout the storage trial, while CO2 increased to 10 and 24% for nonirradiated and irradiated samples, respectively. Initial packaging of product with O2 appeared to enhance toxin production by C. botulinum in product stored at 15°C, probably as a result of increased CO2 enhancing spore germination.


1998 ◽  
Vol 61 (3) ◽  
pp. 324-328 ◽  
Author(s):  
J. W. AUSTIN ◽  
K. L. DODDS ◽  
B. BLANCHFIELD ◽  
J. M. FARBER

To determine the safety of fresh-cut vegetables packaged in modified atmosphere, challenge studies using both nonproteolytic and proteolytic strains of Clostridium botulinum were performed with a variety of fresh-cut packaged salads and vegetables stored at different temperatures. When vegetables were inoculated with spores of C. botulinum and incubated in low-O2 atmospheres, spore germination and growth and toxin production were observed. Botulinum toxin was produced by proteolytic types A and B on onion, butternut squash, rutabaga, salad, and stir-fry vegetables. Nonproteolytic C. botulinum produced toxin on butternut squash and salad. Nonproteolytic C. botulinum was capable of producing neurotoxin at temperatures as low as 5°C, whereas proteolytic strains produced neurotoxin at 15°C and higher. Although most samples were visibly spoiled before detection of botulinum toxin, samples of butternut squash and onion remained acceptable after detection of toxin. The strict maintenance of low temperatures (<5°C) is recommended in order to control the potential growth of C. botulinum on fresh-cut vegetables packaged in a modified atmosphere.


1991 ◽  
Vol 54 (3) ◽  
pp. 162-165 ◽  
Author(s):  
KATHLEEN A. GLASS ◽  
MICHAEL P. DOYLE

Four types of fresh pasta (meat- or cheese-filled tortellini and flat noodle linguine or fettucine) were prepared with different water activities, inoculated with proteolytic Clostridium botulinum spores, packaged under a modified atmosphere, and stored at either 4 or 30°C for 8 to 10 weeks. Products were assayed for botulinal toxin at appropriate sampling times. No toxin was detected in any fresh pasta held at 4°C for up to 8 weeks. However, toxin was detected in meat tortellini with aw of 0.99 and 0.95 at 2 and 6 weeks, respectively, when held at 30°C. Toxin was not detected in tortellini with an aw of 0.94 or below held at 30°C for 10 weeks. Toxin was produced at 2 weeks in linguine at aw 0.96 and held at 30°C, whereas no linguine or fettucine at aw 0.93 or 0.95 and held at 30°C was toxic during 10 or 8 weeks, respectively. The aw of fresh pasta is a principal factor in preventing botulinal toxin production by proteolytic C. botulinum in temperature-abused products. A survey of commercially available fresh pasta revealed that most flat noodles were below the aw limit for botulinal toxin production, whereas most of the filled pasta had aw values which permitted toxin production if temperature abuse occurred.


Sign in / Sign up

Export Citation Format

Share Document