Botulism Challenge Studies of a Modified Atmosphere Package for Fresh Mussels: Inoculated Pack Studies

2012 ◽  
Vol 75 (6) ◽  
pp. 1157-1166 ◽  
Author(s):  
C. R. NEWELL ◽  
LI MA ◽  
MICHAEL DOYLE

A series of botulism challenge studies were performed to determine the possibility of production of botulinum toxin in mussels (Mytilus edulis) held under a commercial high-oxygen (60 to 65% O2), modified atmosphere packaging (MAP) condition. Spore mixtures of six strains of nonproteolytic Clostridium botulinum were introduced into mussel MAP packages receiving different packaging buffers with or without the addition of lactic acid bacteria. Dye studies and package flipping trials were conducted to ensure internalization of spores by packed mussels. Inoculated mussel packages were stored at normal (4°C) and abusive (12°C) temperatures for 21 and 13 days, respectively, which were beyond the packaged mussels' intended shelf life. Microbiological and chemical analyses were conducted at predetermined intervals (a total of five sampling times at each temperature), including total aerobic plate counts, C. botulinum counts, lactic acid bacterial counts, package headspace gas composition, pH of packaging buffer and mussel meat, and botulinum toxin assays of packaging buffer and mussel meat. Results revealed that C. botulinum inoculated in fresh mussels packed under MAP packaging did not produce toxin, even at an abusive storage temperature and when held beyond their shelf life. No evidence was found that packaging buffers or gas composition influenced the lack of botulinum toxin production in packed mussels.

2011 ◽  
Vol 17 (1) ◽  
pp. 23-29 ◽  
Author(s):  
A.M. Sanguinetti ◽  
A. Del Caro ◽  
N.P. Mangia ◽  
N. Secchi ◽  
P. Catzeddu ◽  
...  

This study evaluated the shelf life of fresh pasta filled with cheese subjected to modified atmosphere packaging (MAP) or air packaging (AP). After a pasteurization treatment, fresh pasta was packaged under a 50/50 N2/CO2 ratio or in air (air batch). Changes in microbial growth, in-package gas composition, chemical—physical parameters and sensory attributes were monitored for 42 days at 4 °C. The pasteurization treatment resulted in suitable microbiological reduction. MAP allowed a mold-free shelf life of the fresh filled pasta of 42 days, whereas air-packaged samples got spoilt between 7 and 14 days. The hurdle approach used (MAP and low storage temperature) prevented the growth of pathogens and alterative microorganisms. MAP samples maintained a high microbiological standard throughout the storage period. The panel judged MAP fresh pasta above the acceptability threshold throughout the shelf life.


2017 ◽  
Vol 80 (5) ◽  
pp. 740-749 ◽  
Author(s):  
Nuria García-Martínez ◽  
Pedro Andreo-Martínez ◽  
Luis Almela ◽  
Lucía Guardiola ◽  
José A. Gabaldón

ABSTRACT In recent years the sales of minimally processed vegetables have grown exponentially as a result of changes in consumer habits. The availability of artichoke buds as a ready-to-eat product would be, therefore, highly advantageous. However, minimally processed artichoke hearts are difficult to preserve because of their rapid browning and the proliferation of naturally occurring microorganisms. We developed artichoke hearts prepared as ready-to-eat products that maintain the characteristics of the fresh product. The microbiological stability, sensory qualities, and shelf life of the processed artichoke hearts were determined. During the shelf life, Salmonella, Listeria monocytogenes, and Escherichia coli counts were below the limits legally established by European regulations for minimally processed vegetables. The pH played an important role in microbial growth. Artichoke hearts had lower microbial counts in experiments conducted at pH 4.1 than in experiments conducted at pH 4.4, although the recommended threshold value for total plate count (7 log CFU/g) was not exceeded in either case. Sensory parameters were affected by the microorganisms, and artichoke products at lower pH had better sensory qualities. Vacuum impregnation techniques, modified atmosphere packaging, and low storage temperature were very effective for increasing the shelf life of minimally processed artichokes. The average shelf life was approximately 12 to 15 days.


2018 ◽  
Vol 55 (9) ◽  
pp. 3547-3555
Author(s):  
Isabela Rodrigues ◽  
Marco Antonio Trindade ◽  
Ana Flávia Palu ◽  
Juliana Cristina Baldin ◽  
César Gonçalves de Lima ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 569 ◽  
Author(s):  
Stefania Volpe ◽  
Silvana Cavella ◽  
Elena Torrieri

The effect of caseinate/chitosan blend on the shelf life of minimally processed apples was studied. In the first phase of the work, the effect of the biopolymer coating on the respiration rate of the minimally processed apples was studied as function of gas composition (5%, 10%, 21% of O2 with N2 as balance at 5 °C) and temperature (5 °C, 10 °C at 5% of O2 with N2 as balance). In the second phase, the shelf life of the packed product was studied during storage at 5 °C. The gas composition (O2%-CO2%) in the package headspace, relative humidity, pH, hardness, color and antioxidant capacity of the product were monitored after 0, 1, 4, 7, 11, and 14 days. The coating effectively reduced respiration rate of the product when oxygen was over 10%. In the presence of the coating, the reduction of oxygen did not affect the respiration rate. At 5% of O2, the respiration rate decreased by 50% by changing the temperature from 10 °C to 5 °C. Shelf life study showed that the chitosan—caseinate coating was able to preserve the mechanical properties and the antioxidant capacity of the product during storage by increasing the shelf life by 7 days to 11 days at 5 °C.


1997 ◽  
Vol 60 (9) ◽  
pp. 1055-1063 ◽  
Author(s):  
N. R. REDDY ◽  
H. M. SOLOMON ◽  
H. YEP ◽  
M. G. ROMAN ◽  
E. J. RHODEHAMEL

Shelf life (onset of sensory spoilage) and the potential for toxin production by Clostridium botulinum type E in retail-type packages of fresh aquacultured salmon fillets packaged in high-barrier film bags under selected atmospheres (100% air, a modified atmosphere containing 75% CO2:25% N2, and vacuum) and stored under refrigeration (4°C) and temperature-abuse conditions (8 and 16°C) were investigated. Chemical spoilage indicators (trimethylamine and surface pH) and microbial populations were compared with sensory spoilage characteristics. Storage temperature influenced the time to onset of both sensory spoilage and toxin development in salmon fillets packaged in all atmospheres. The shelf life of fillets packaged in all atmospheres decreased with increase of storage temperature from 4 to 16°C. Trimethylamine content associated with the onset of spoilage for 100% air-packaged fillets increased as storage temperature increased. However, for modified-atmosphere-packaged fillets, the trimethylamine content associated with the onset of spoilage increased as storage temperature decreased from 8 to 4°C. Surface pH was not a good spoilage indicator for modified-atmosphere-packaged fillets. Toxin development preceded sensory spoilage at 16°C storage for fillets packaged in modified atmospheres. Toxin development coincided with sensory spoilage or was slightly delayed for the fillets packaged in all the atmospheres at 8°C storage. At 4°C none of the fillets packaged in either of the atmospheres developed toxin, even 20 days after spoilage as determined by sensory characteristics.


1991 ◽  
Vol 54 (1) ◽  
pp. 58-70 ◽  
Author(s):  
J. M. FARBER

Modified-atmosphere packaged (MAP) foods have become increasingly more common in North America, as food manufacturers have attempted to meet consumer demands for fresh, refrigerated foods with extended shelf life. Although much information exists in the general area of MAP technology, research on the microbiological safety of these foods is still lacking. The great vulnerability of MAP foods from a safety standpoint is that with many modified atmospheres containing moderate to high levels of carbon dioxide, the aerobic spoilage organisms which usually warn consumers of spoilage are inhibited, while the growth of pathogens may be allowed or even stimulated. In the past, the major concerns have been the anaerobic pathogens, especially the psychrotrophic, nonproteolytic clostridia. However, because of the emergence of psychrotrophic pathogens such as Listeria monocytogenes, Aeromonas hydrophila, and Yersinia enterocolitica, new safety issues have been raised. This stems mainly from the fact that the extended shelf life of many MAP products may allow extra time for these pathogens to reach dangerously high levels in a food. This review focuses on the effects of MAP on the growth and survival of foodborne pathogens. Considered are the major psychrotrophic pathogens, the mesophiles such as the salmonellae and staphylococci, as well as the microaerophilic Campylobacter jejuni. The use of MAP in various food commodities such as beef, chicken, fish, and sandwiches is also discussed. Examples of various foods currently being packaged under MAP in North America are given, along with the specific atmospheres employed for the various food groups. Major safety concerns that still need to be addressed include the potential for growth and toxin production of Clostridium botulinum type E in MAP fish products, the growth of L. monocytogenes and A. hydrophila under modified atmospheres in various food commodities, and the enhanced survival of anaerobic spores and C. jejuni under certain gas atmospheres. Additional research with MAP foods is needed to ensure the microbiological safety of the numerous MAP products that will be available to the consumer in the next decade and beyond.


2008 ◽  
Vol 71 (6) ◽  
pp. 1237-1243 ◽  
Author(s):  
M. TURGIS ◽  
J. HAN ◽  
J. BORSA ◽  
M. LACROIX

Selected Chinese cinnamon, Spanish oregano, and mustard essential oils (EOs) were used in combination with irradiation to evaluate their ability to eliminate pathogenic bacteria and extend the shelf life of medium-fat-content ground beef (23% fat). Shelf life was defined as the time when the total bacterial count reached 107 CFU/g. The shelf life of ground beef was determined for 28 days at 4°C after treatment with EOs. The concentrations of EOs were predetermined such that sensory properties of cooked meat were maintained: 0.025% Spanish oregano, 0.025% Chinese cinnamon, and 0.075% mustard. Ground beef samples containing EOs were then packaged under air or a modified atmosphere and irradiated at 1.5 kGy. Ground beef samples (10 g) were taken during the storage period for enumeration of total mesophilic aerobic bacteria, Escherichia coli, Salmonella, total coliforms, lactic acid bacteria, and Pseudomonas. Mustard EO was the most efficient for reducing the total mesophilic aerobic bacteria and eliminating pathogenic bacteria. Irradiation alone completely inhibited the growth of total mesophilic aerobic and pathogenic bacteria. The combination of irradiation and EOs was better for reducing lactic acid bacteria (mustard and cinnamon EOs) and Pseudomonas (oregano and mustard EOs). The best combined treatment for extending the shelf life of ground beef for up to 28 days was EO plus irradiation (1.5 kGy) and modified atmosphere packaging.


LWT ◽  
2011 ◽  
Vol 44 (1) ◽  
pp. 337-342 ◽  
Author(s):  
Rocio Rodriguez-Aguilera ◽  
Jorge C. Oliveira ◽  
Julio C. Montanez ◽  
Pramod V. Mahajan

2015 ◽  
Vol 82 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Marianna Mastromatteo ◽  
Annalisa Lucera ◽  
Daniela Esposto ◽  
Amalia Conte ◽  
Michele Faccia ◽  
...  

In this work, an active coating and modified atmosphere packaging (MAP) were investigated to prolong the shelf life of Fiordilatte packaged in traditional brine. First, the screening of MAP was performed in order to select the best gas composition. Then, the combined effect of MAP and coating was investigated. Finally, the coating was loaded with potassium sorbate and its effects under MAP conditions were also assessed. Results highlighted that MAP was able to control growth of the main spoilage microbial group (Pseudomonasspp.); however, the solubilisation of carbon dioxide into the brine compromised Fiordilatte texture. Therefore, the presence of the active coating avoided the damage of gas solubilisation and promoted a shelf life prolongation by about 157%.


2019 ◽  
Vol 82 (9) ◽  
pp. 1546-1552
Author(s):  
MARCELLO TREVISANI ◽  
ALESSANDRA DE CESARE ◽  
SILVA VITALI ◽  
ROCCO MANCUSI ◽  
FEDERICA BOVO ◽  
...  

ABSTRACT This study evaluated the growth of lactic acid bacteria (LAB) in a fresh, filled-pasta meal, stored in modified atmosphere packaging and the influence of lactic acid (LA) and pH on the growth of Listeria monocytogenes (Lm). Samples were taken from three lots manufactured by a local catering company and stored at both 6 and 14°C. LAB numbers, LA concentration, pH, and the presence of Lm were evaluated at 1, 4, 6, 8, 10, 12, and 14 days of shelf life and the undissociated LA concentration ([LA]) was calculated. The LAB maximum cell density was greater in the products stored at 14°C than those stored at 6°C (10.1 ± 1.1 versus 5.6 ± 1.5 log CFU/g) and [LA] at 14 days was 9 to 21 ppm at 6°C and 509 to 1,887 ppm at 14°C. Challenge tests were made to evaluate the interference of LAB and [LA] on Lm growth. Aliquots of the samples (25 g) were inoculated at 1 to 10 days of shelf life and incubated at 9°C for 7 days, and the difference between Lm numbers at the end and at the beginning of the test (δ) was calculated. Logistic regression was used to model the probability of growth of Lm as a function of LAB and [LA]. The products inoculated at 1 day of shelf life had δ values between 4.2 and 5.6 log CFU/g, but the growth potential was progressively reduced during the shelf life. Lm growth was never observed in the products stored at 14°C. In those stored at 6°C, it grew only in the samples with LAB <5.7 log CFU/g. LAB interaction might thus inhibit the growth of Lm in temperature-abused products and limit its growth in refrigerated products. Logistic regression estimated that the probability of Lm growth was <10% if LAB was >6.6 log CFU/g or log[LA] was >2.2 ppm. The growth or inactivation kinetic of Lm was investigated with a homogenate of three samples with LAB numbers close to the maximum population density. After an initial growth, a subsequent reduction in the number of Lm was observed. This means that the maximum numbers of Lm might not be detected at the end of the product shelf life.


Sign in / Sign up

Export Citation Format

Share Document