Decontamination of Beef Subprimal Cuts Intended for Blade Tenderization or Moisture Enhancement

2007 ◽  
Vol 70 (5) ◽  
pp. 1174-1180 ◽  
Author(s):  
C. E. HELLER ◽  
J. A. SCANGA ◽  
J. N. SOFOS ◽  
K. E. BELK ◽  
W. WARREN-SERNA ◽  
...  

The prevalence of Escherichia coli O157:H7 on beef subprimal cuts intended for mechanical tenderization was evaluated. This evaluation was followed by the assessment of five antimicrobial interventions at minimizing the risk of transferring E. coli O157:H7 to the interior of inoculated subprimal cuts during blade tenderization (BT) or moisture enhancement (ME). Prevalence of E. coli O157:H7 on 1,014 uninoculated beef subprimals collected from six packing facilities was 0.2%. Outside round pieces inoculated with E. coli O157:H7 at 104 CFU/100 cm2 were treated with (i) no intervention, (ii) surface trimming, (iii) hot water (82°C), (iv) warm 2.5% lactic acid (55°C), (v) warm 5.0% lactic acid (55°C), or (vi) 2% activated lactoferrin followed by warm 5.0% lactic acid (55°C) and then submitted to BT or ME. Prevalence (n = 196) of internalized (BT and ME) E. coli O157:H7 was 99%. Enumeration of E. coli O157:H7 (n = 192) revealed mean surface reductions of 0.93 to 1.10 log CFU/100 cm2 for all antimicrobial interventions. E. coli O157:H7 was detected on 3 of the 76 internal BT samples and 73 of the 76 internal ME samples. Internal ME samples with no intervention had significantly higher mean E. coli O157:H7 populations than did those internal samples treated with an intervention, but there were no significant differences in E. coli O157:H7 populations among internal BT samples. Results of this study demonstrate that the incidence of E. coli O157:H7 on the surface of beef subprimal cuts is low and that interventions applied before mechanical tenderization can effectively reduce the transfer of low concentrations of E. coli O157:H7 to the interior of beef subprimal cuts.

2008 ◽  
Vol 71 (3) ◽  
pp. 621-624 ◽  
Author(s):  
NORASAK KALCHAYANAND ◽  
TERRANCE M. ARTHUR ◽  
JOSEPH M. BOSILEVAC ◽  
DAYNA M. BRICHTA-HARHAY ◽  
MICHAEL N. GUERINI ◽  
...  

The effectiveness of electrolyzed oxidizing water, FreshFx, hot water, DL-lactic acid, and ozonated water was determined using a model carcass spray-washing cabinet. A total of 140 beef heads obtained from a commercial processing line were inoculated with Escherichia coli O157:H7 on the cheek areas. Each head was exposed to a simulated preevisceration wash and then had antimicrobial wash treatments. Hot water, lactic acid, and FreshFx treatments reduced E. coli O157:H7 on inoculated beef heads by 1.72, 1.52, and 1.06 log CFU/cm2, respectively, relative to the simulated preevisceration wash. Electrolyzed oxidizing water and ozonated water reduced E. coli O157:H7 less than 0.50 log CFU/cm2. Hot water, lactic acid, and FreshFx could be used as decontamination washes for the reduction of E. coli O157:H7 on bovine head and cheek meat.


2015 ◽  
Vol 78 (6) ◽  
pp. 1090-1097 ◽  
Author(s):  
KYUNG YUK KO ◽  
IFIGENIA GEORNARAS ◽  
HYUN-DONG PAIK ◽  
KEE-TAE KIM ◽  
JOHN N. SOFOS

The antimicrobial effects of thyme oil (TO), grapefruit seed extract (GSE), and basil essential oil, alone or in combination with cetylpyridinium chloride (CPC), sodium diacetate, or lactic acid, were evaluated against Escherichia coli O157:H7 in a moisture-enhanced beef model system. The model system was composed of a nonsterile beef homogenate to which NaCl (0.5%) and sodium tripolyphosphate (0.25%) were added, together with the tested antimicrobial ingredients. Beef homogenate treatments were inoculated (ca. 3 log CFU/ml) with rifampin-resistant E. coli O157:H7 (eight-strain mixture) and incubated at 15°C (48 h). The most effective individual treatments were TO (0.25 or 0.5%) and GSE (0.5 or 1.0%), which immediately reduced (P < 0.05) pathogen levels by ≥3.4 log CFU/ml. Additionally, CPC (0.04%) reduced initial E. coli O157:H7 counts by 2.7 log CFU/ml. Most combinations of the tested plant-derived extracts with CPC (0.02 or 0.04%) and sodium diacetate (0.25%) had an additive effect with respect to antibacterial activity. In a second study, antimicrobial interventions were evaluated for their efficacy in reducing surface contamination of E. coli O157:H7 on beef cuts and to determine the effect of these surface treatments on subsequent internalization of the pathogen during blade tenderization. Beef cuts (10 by 8 by 3.5 cm) were inoculated (ca. 4 log CFU/g) on one side with the rifampin-resistant E. coli O157:H7 strain mixture and were then spray treated (20 lb/in2, 10 s) with water, GSE (5 and 10%), lactic acid (5%), or CPC (5%). Untreated (control) and spray-treated surfaces were then subjected to double-pass blade tenderization. Surface contamination (4.4 log CFU/g) of E. coli O157:H7 was reduced (P < 0.05) to 3.4 (5% CPC) to 4.1 (water or 5% GSE) log CFU/g following spray treatment. The highest and lowest transfer rates of pathogen cells from the surface to deeper tissues of blade-tenderized sections were obtained in the untreated control and CPC-treated samples, respectively.


Author(s):  
Kourtney A. Daniels ◽  
Katherine Modrow ◽  
Wesley N. Osburn ◽  
Thomas Matt Taylor

Water use for antimicrobial intervention application for beef harvest has come under increased scrutiny in recent years in an effort to enhance water conservation during beef harvest and fabrication. This study was conducted to determine the efficacy of beef safety interventions for reducing surrogates of the Shiga toxin-producing Escherichia coli (STEC) on beef cuts while lowering intervention-purposed water use for a Small or Very Small beef establishment. Beef briskets, shoulder/clods, and rounds were inoculated with a gelatin-based slurry containing 6.8±0.3 log CFU/g non-pathogenic E. coli . After 30 min of attachment, inoculated cuts were treated by: conventional lactic acid spray (LA; 2.5%, 55°C), lactic acid spray delivered by an electrostatic spray handheld wand (ESS; 2.5%, 55°C), hot water spray (HW; 82°C), recycled hot water spray (RW; 82°C) wherein previously applied hot water was collected, thermally pasteurized to 82°C, or left untreated (CON). 100 mL of each treatment was sprayed onto marked surfaces of inoculated cuts, after which surviving surrogate E. coli were enumerated. LA and ESS treatments produced greater reductions (1.0-1.1 log CFU/300 cm 2 ) versus hot water interventions (0.3-0.5 log CFU/300 cm 2 ) ( p =<0.0001). Recycling of water reduced water losses by no less than 45% on RW-treated beef cuts. Low water beef safety interventions offer Small and Very Small inspected beef establishments opportunities to incrementally reduce water use during intervention application, but not necessarily without loss of pathogen reduction efficacy.


2018 ◽  
Vol 81 (5) ◽  
pp. 762-768
Author(s):  
JOSHUA D. HASTY ◽  
JOHN A. HENSON ◽  
GARY R. ACUFF ◽  
DENNIS E. BURSON ◽  
JOHN B. LUCHANSKY ◽  
...  

ABSTRACT Scalding of hide-on bob veal carcasses with or without standard scalding chemical agents typically used for hogs, followed by an 82.2°C hot water wash and lactic acid spray (applied at ambient temperature) before chilling, was evaluated to determine its effectiveness in reducing Shiga toxin–producing Escherichia coli surrogate populations. A five-strain cocktail of rifampin-resistant, nonpathogenic E. coli surrogates was used to inoculate hides of veal carcasses immediately after exsanguination (target inoculation level of 7.0 log CFU/100 cm2). For carcasses receiving no scalding treatments, spraying with 82.2°C water as a final wash resulted in a 4.5-log CFU/100 cm2 surrogate reduction, and an additional 1.2-log CFU/100 cm2 reduction was achieved by spraying with 4.5% lactic acid before chilling. Scalding hide-on carcasses in 60°C water (no chemicals added) for 4 min in a traditional hog scalding tank resulted in a 2.1-log CFU/100 cm2 reduction in surrogate levels, and a subsequent preevisceration 82.2°C water wash provided an additional 2.9-log CFU/100 cm2 reduction. Spraying a 4.5% solution of lactic acid onto scalded, hide-on carcasses (after the 82.2°C water wash) resulted in a minimal additional reduction of 0.4 log CFU/100 cm2. Incorporation of scalding chemicals into the scald water resulted in a 4.1-log CFU/100 cm2 reduction (1.9 log CFU/100 cm2 greater than scalding without chemicals) in the surrogate population, and the first 82.2°C wash provided an additional 2.5-log CFU/100 cm2 reduction. Application of antimicrobial interventions did not affect the carcass temperature decline during chilling, the pH decline, or the color characteristics of the ribeye or the flank of the bob veal carcasses.


2015 ◽  
Vol 78 (6) ◽  
pp. 1197-1202 ◽  
Author(s):  
THELMA F. CÁLIX-LARA ◽  
KATIE R. KIRSCH ◽  
MARGARET D. HARDIN ◽  
ALEJANDRO CASTILLO ◽  
STEPHEN B. SMITH ◽  
...  

Although studies have shown antimicrobial treatments consisting of hot water sprays alone or paired with lactic acid rinses are effective for reducing Escherichia coli O157:H7 loads on beef carcass surfaces, the mechanisms by which these interventions inactivate bacterial pathogens are still poorly understood. It was hypothesized that E. coli O157:H7 exposure to hot water in vitro at rising temperatures for longer time periods would result in increasing deterioration of bacterial outer membrane lipids, sensitizing the pathogen to subsequent lactic acid application. Cocktails of E. coli O157:H7 strains were subjected to hot water at 25 (control) 65, 75, or 85°C incrementally up to 60 s, after which surviving cells were enumerated by plating. Formation of lipid hydroperoxides from bacterial membranes and cytoplasmic accumulation of l-lactic acid was quantified spectrophotometrically. Inactivation of E. coli O157:H7 proceeded in a hot water exposure duration- and temperature-dependent manner, with populations being reduced to nondetectable numbers following heating of cells in 85°C water for 30 and 60 s (P < 0.05). Lipid hydroperoxide formation was not observed to be dependent upon increasing water temperature or exposure period. The data suggest that hot water application prior to organic acid application may function to increase the sensitivity of E. coli O157:H7 cells by degrading membrane lipids.


Author(s):  
Chevise L. Thomas ◽  
Harshavardhan Thippareddi ◽  
Sanjay Kumar ◽  
Macc Rigdon ◽  
Robert W. Mckee ◽  
...  

Ruminants are natural reservoirs of Shiga toxin producing Escherichia coli (STEC), and the STEC can be easily transferred to carcasses during the conversion of animals to meat. Three experiments were conducted to validate the efficacy of lactic acid (4%; LA), peroxyacetic acid (300 ppm; PAA), and hot water (80˚C; HW) for their individual or combined abilities to reduce STEC surrogates on bob veal carcasses pre- and post-chill and through fabrication. In experiment 1, hot carcasses (n=9) were inoculated with a 5-strain cocktail (ca. 8 log CFU/mL) containing rifampicin-resistant surrogate Escherichia coli ( E. coli ; BAA-1427, BAA-1428, BAA-1429, BAA-1430, and BAA-1431) and then treated with HW, LA, or PAA. Carcasses were then chilled (0±1°C; 24 h), split in half, and each side was treated with either LA or PAA. In experiment 2, hot carcasses (n=3) were inoculated and chilled (24 h). After 24 h, the carcasses were split, and each side was treated with either LA or PAA. For experiment 3, carcasses (n=3) were chilled for 24 h, split, inoculated, and treated with either LA or PAA. After chilling, carcasses from all three experiments were fabricated to subprimals and the cut surfaces were sampled to determine the translocation. Experiment 1 showed that LA+LA was the most effective ( P ≤ 0.05) treatment for reducing surrogate E. coli on veal. In experiments 2 and 3, LA and PAA were similar ( P > 0.05) in their abilities to reduce E. coli on chilled veal carcasses. In experiments 1 and 2, all antimicrobial treatments resulted in undetectable levels (< 0.2 log CFU/cm 2 ) of surrogate E. coli on cut surfaces after fabrication, while low levels (1.7 and 1.0 log CFU/cm 2 for LA and PAA, respectively) were observed in experiment 3. Of the antimicrobial interventions utilized, lactic acid was more effective for reducing STEC surrogate populations on veal carcasses, pre- and/or post-chill.


2006 ◽  
Vol 69 (6) ◽  
pp. 1273-1279 ◽  
Author(s):  
LAURA V. ASHTON ◽  
IFIGENIA GEORNARAS ◽  
JARRET D. STOPFORTH ◽  
PANAGIOTIS N. SKANDAMIS ◽  
KEITH E. BELK ◽  
...  

This study evaluated the behavior of Escherichia coli O157:H7 during aerobic storage, after storage in vacuum packages, on beef inoculated with cultures prepared (35°C, 24 h) in tryptic soy broth without dextrose (TSB), nonacid hot water carcass decontamination runoff fluids (washings; pH 6.0; WASH), cells from biofilms formed on stainless steel coupons in WASH (WETB), or WETB dried (25°C, 12 h) before harvesting of cells (DRYB). These inocula were applied to fresh beef pieces (40 cm2), which were then left untreated or treated by immersion in hot water (75°C) followed by 2% lactic acid (55°C; hot water/lactic acid [HW/LA]), for 30 s each. Inoculated samples were vacuum packaged and stored at 0 (30, 60, or 90 days), 4 (7 or 14 days), or 12°C (4 or 8 days) and subsequently transferred to retail packages for aerobic storage at 7°C for 5 days. Populations of E. coli O157:H7, regardless of inoculum type, remained generally unchanged (P > 0.05) after aerobic storage (7°C, 5 days) of untreated or HW/LA-treated beef samples previously stored in vacuum packages at 0 or 4°C. However, reductions in E. coli O157:H7 levels were generally obtained when vacuum packaged, untreated beef samples previously stored at 12°C were transitioned to aerobic conditions. Additionally, despite similar (P > 0.05) levels of E. coli O157:H7 cells of TSB, WASH, WETB, and DRYB origin on vacuum-packaged, untreated samples after 8 days of storage at 12°C, subsequent aerobic storage resulted in larger (P <0.05) reductions of cells of WETB and DRYB origin than for cells of TSB and WASH origin. For HW/LA-treated beef previously stored at 12°C in vacuum packages, populations of E. coli O157:H7 remained largely unchanged after aerobic storage in retail packages. Results thus indicated that aerobic storage of beef (7°C, 5 days) previously stored in vacuum packages at 0 or 4°C did not lead to E. coli O157:H7 population changes, whereas transition from vacuum packages stored under mildly abusive temperature (12°C) to aerobic storage may have caused injury and death to the pathogen.


2012 ◽  
Vol 75 (7) ◽  
pp. 1207-1212 ◽  
Author(s):  
NORASAK KALCHAYANAND ◽  
TERRANCE M. ARTHUR ◽  
JOSEPH M. BOSILEVAC ◽  
JOHN W. SCHMIDT ◽  
RONG WANG ◽  
...  

Although numerous antimicrobial interventions targeting Escherichia coli O157:H7 have been developed and implemented to decontaminate meat and meat products during the harvesting process, the information on efficacy of these interventions against the so-called Big Six non-O157 Shiga toxin–producing E. coli (STEC) strains is limited. Prerigor beef flanks (160) were inoculated to determine if antimicrobial interventions currently used by the meat industry have a similar effect in reducing non-O157 STEC serogroups O26, O45, O103, O111, O121, and O145 compared with E. coli O157:H7. A high (104 CFU/cm2) or a low (101 CFU/cm2) inoculation of two cocktail mixtures was applied to surfaces of fresh beef. Cocktail mixture 1 was composed of O26, O103, O111, O145, and O157, while cocktail mixture 2 was composed of O45, O121, and O157. The inoculated fresh beef flanks were subjected to spray treatments by the following four antimicrobial compounds: acidified sodium chlorite, peroxyacetic acid, lactic acid, and hot water. High-level inoculation samples were enumerated for the remaining bacteria populations after each treatment and compared with the untreated controls, while low-level inoculation samples were chilled for 48 h at 4°C before enrichment, immunomagnetic separation, and isolation. Spray treatments with hot water were the most effective, resulting in mean pathogen reductions of 3.2 to 4.2 log CFU/cm2, followed by lactic acid. Hot water and lactic acid also were the most effective interventions with the low-level inoculation on surfaces of fresh beef flanks after chilling. Peroxyacetic acid had an intermediate effect, while acidified sodium chlorite was the least effective in reducing STEC levels immediately after treatment. Results indicate that the reduction of non-O157 STEC by antimicrobial interventions on fresh beef surfaces were at least as great as for E. coli O157:H7. However, the recovery of these low inoculation levels of pathogens indicated that there is no single intervention to eliminate them.


2008 ◽  
Vol 71 (2) ◽  
pp. 405-410 ◽  
Author(s):  
J. E. SAWYER ◽  
S. T. GREINER ◽  
G. R. ACUFF ◽  
L. M. LUCIA ◽  
E. CABRERA-DIAZ ◽  
...  

Effects of 10% xylitol (a five-carbon sugar alcohol) on adhesion of Escherichia coli O157:H7 and Salmonella Typhimurium to meat surfaces were examined with three approaches. First, beef outside round was inoculated with rifampin-resistant E. coli O157:H7 and Salmonella Typhimurium dispersed in xylitol or peptone solution. Samples were rinsed with water or not rinsed in a 2 × 2 factorial arrangement. No interaction existed between inoculum and rinsing treatments (P > 0.84). Incubation in xylitol had minimal impact on pathogen adhesion (P > 0.76); however, rinsing reduced pathogen cell counts (P < 0.01). Second, meat samples were treated with water, xylitol, or no rinse; inoculated with pathogens dispersed in peptone solution (8.6 log CFU/ml for each pathogen); and then treated with water, xylitol, or no rinse in a 3 × 3 factorial arrangement. No interactions were observed (P > 0.50). Postinoculation rinsing reduced pathogen loads (P < 0.01) without difference between water and xylitol (P > 0.64). Third, carcass surfaces inoculated with pathogens (5.5 log CFU/cm2) were treated with 35°C water wash, 2.5% l-lactic acid spray, 10% xylitol spray, lactic acid plus xylitol, or hot water plus xylitol. Lactic acid treatments reduced Salmonella Typhimurium at0h(P < 0.01) and 24 h (P < 0.02). Hot water treatments tended to reduce Salmonella Typhimurium at0h(P < 0.07). Xylitol did not reduce pathogens (P > 0.62) or increase effectiveness of other treatments. Xylitol does not influence E. coli O157:H7 and Salmonella Typhimurium adhesion to meat surfaces.


2006 ◽  
Vol 69 (8) ◽  
pp. 1808-1813 ◽  
Author(s):  
JOSEPH M. BOSILEVAC ◽  
XIANGWU NOU ◽  
GENEVIEVE A. BARKOCY-GALLAGHER ◽  
TERRANCE M. ARTHUR ◽  
MOHAMMAD KOOHMARAIE

Lactic acid has become the most commonly used organic acid for treatment of postevisceration beef carcasses. Many processors have also implemented 2% lactic acid washes on preevisceration carcasses. We previously demonstrated that hot water washing and steam vacuuming are effective carcass interventions. Because of the effectiveness of hot water, we compared its use with that of lactic acid as a preevisceration wash in a commercial setting. A commercial hot water carcass wash cabinet applying 74°C (165°F) water for 5.5 s reduced both aerobic plate counts and Enterobacteriaceae counts by 2.7 log CFU/100 cm2 on preevisceration carcasses. A commercial lactic acid spray cabinet that applied 2% l-lactic acid at approximately 42°C (105 to 110°F) to preevisceration carcasses reduced aerobic plate counts by 1.6 log CFU/100 cm2 and Enterobacteriaceae counts by 1.0 log CFU/100 cm2. When the two cabinets were in use sequentially, i.e., hot water followed by lactic acid, aerobic plate counts were reduced by 2.2 log CFU/100 cm2 and Enterobacteriaceae counts were reduced by 2.5 log CFU/100 cm2. Hot water treatments reduced Escherichia coli O157:H7 prevalence by 81%, and lactic acid treatments reduced E. coli O157:H7 prevalence by 35%, but the two treatments in combination produced a 79% reduction in E. coli O157:H7, a result that was no better than that achieved with hot water alone. These results suggest that hot water would be more beneficial than lactic acid for decontamination of preevisceration beef carcasses.


Sign in / Sign up

Export Citation Format

Share Document