Lack of Internalization of Escherichia coli O157:H7 in Lettuce (Lactuca sativa L.) after Leaf Surface and Soil Inoculation

2009 ◽  
Vol 72 (10) ◽  
pp. 2028-2037 ◽  
Author(s):  
GUODONG ZHANG ◽  
LI MA ◽  
LARRY R. BEUCHAT ◽  
MARILYN C. ERICKSON ◽  
VANESSA H. PHELAN ◽  
...  

Survival and internalization characteristics of Escherichia coli O157:H7 in iceberg, romaine, and leaf lettuce after inoculation of leaf surfaces and soil were determined. A five-strain mixture of E. coli O157:H7 in water and cow manure extract was used as an inoculum for abaxial and adaxial sides of leaves at populations of 6 to 7 log and 4 log CFU per plant. The five strains were individually inoculated into soil at populations of 3 and 6 log CFU/g. Soil, leaves, and roots were analyzed for the presence and population of E. coli O157:H7. Ten (4.7%) of 212 samples of leaves inoculated on the adaxial side were positive for E. coli O157:H7, whereas 38 (17.9%) of 212 samples inoculated on the abaxial side were positive. E. coli O157:H7 survived for at least 25 days on leaf surfaces, with survival greater on the abaxial side of the leaves than on the adaxial side. All 212 rhizosphere samples and 424 surface-sanitized leaf and root samples from plants with inoculated leaves were negative for E. coli O157:H7, regardless of plant age at the time of inoculation or the location on the leaf receiving the inoculum. The pathogen survived in soil for at least 60 days. Five hundred ninety-eight (99.7%) of 600 surface-sanitized leaf and root samples from plants grown in inoculated soil were negative for E. coli O157:H7. Internalization of E. coli O157:H7 in lettuce leaves and roots did not occur, regardless of the type of lettuce, age of plants, or strain of E. coli O157:H7.

2010 ◽  
Vol 73 (6) ◽  
pp. 1023-1029 ◽  
Author(s):  
MARILYN C. ERICKSON ◽  
CATHY C. WEBB ◽  
JUAN CARLOS DIAZ-PEREZ ◽  
SHARAD C. PHATAK ◽  
JOHN J. SILVOY ◽  
...  

Numerous field studies have revealed that irrigation water can contaminate the surface of plants; however, the occurrence of pathogen internalization is unclear. This study was conducted to determine the sites of Escherichia coli O157:H7 contamination and its survival when the bacteria were applied through spray irrigation water to either field-grown spinach or lettuce. To differentiate internalized and surface populations, leaves were treated with a surface disinfectant wash before the tissue was ground for analysis of E. coli O157:H7 by direct plate count or enrichment culture. Irrigation water containing E. coli O157:H7 at 102, 104, or 106 CFU/ml was applied to spinach 48 and 69 days after transplantation of seedlings into fields. E. coli O157:H7 was initially detected after application on the surface of plants dosed at 104 CFU/ml (4 of 20 samples) and both on the surface (17 of 20 samples) and internally (5 of 20 samples) of plants dosed at 106 CFU/ml. Seven days postspraying, all spinach leaves tested negative for surface or internal contamination. In a subsequent study, irrigation water containing E. coli O157:H7 at 108 CFU/ml was sprayed onto either the abaxial (lower) or adaxial (upper) side of leaves of field-grown lettuce under sunny or shaded conditions. E. coli O157:H7 was detectable on the leaf surface 27 days postspraying, but survival was higher on leaves sprayed on the abaxial side than on leaves sprayed on the adaxial side. Internalization of E. coli O157:H7 into lettuce leaves also occurred with greater persistence in leaves sprayed on the abaxial side (up to 14 days) than in leaves sprayed on the adaxial side (2 days).


2001 ◽  
Vol 64 (2) ◽  
pp. 147-151 ◽  
Author(s):  
KAZUE TAKEUCHI ◽  
JOSEPH F. FRANK

Viability of Escherichia coli O157:H7 cells on lettuce leaves after 200 mg/liter (200 ppm) chlorine treatment and the role of lettuce leaf structures in protecting cells from chlorine inactivation were evaluated by confocal scanning microscopy (CSLM). Lettuce samples (2 by 2 cm) were inoculated by immersing in a suspension containing 109 CFU/ml of E. coli O157: H7 for 24 ± 1 h at 4°C. Rinsed samples were treated with 200 mg/liter (200 ppm) chlorine for 5 min at 22°C. Viability of E. coli O157:H7 cells was evaluated by CSLM observation of samples stained with Sytox green (dead cell stain) and Alexa 594 conjugated antibody against E. coli O157:H7. Quantitative microscopic observations of viability were made at intact leaf surface, stomata, and damaged tissue. Most E. coli O157:H7 cells (68.3 ± 16.2%) that had penetrated 30 to 40 μm from the damaged tissue surface remained viable after chlorine treatment. Cells on the surface survived least (25.2 ± 15.8% survival), while cells that penetrated 0 to 10 μm from the damaged tissue surface or entered stomata showed intermediate survival (50.8 ± 13.5 and 45.6 ± 9.7% survival, respectively). Viability was associated with the depth at which E. coli O157:H7 cells were in the stomata. Although cells on the leaf surface were mostly inactivated, some viable cells were observed in cracks of cuticle and on the trichome. These results demonstrate the importance of lettuce leaf structures in the protection of E. coli O157:H7 cells from chlorine inactivation.


2008 ◽  
Vol 71 (2) ◽  
pp. 252-256 ◽  
Author(s):  
JIN KYUNG KIM ◽  
MARK A. HARRISON

Ice can be used to chill romaine lettuce and maintain relative humidity during transportation. Escherichia coli O157:H7 may contaminate water used for ice. The objective of this study was to determine the potential for E. coli O157:H7 contamination of romaine lettuce from either ice contaminated with the pathogen or by transfer from lettuce surfaces via melting ice. In experiment 1, lettuce was spot inoculated with E. coli O157:H7 and chilled with ice prepared from uncontaminated tap water. In experiment 2, water inoculated with this pathogen was frozen and used to ice lettuce. Three heads of lettuce were stacked in each container and stored at 4 or 20°C. After the ice melted, E. coli O157:H7 attachment to and recovery from the lettuce leaves were determined. For experiment 1, the population of E. coli O157:H7 attached to inoculated sites averaged 3.8 and 5.5 CFU/cm2 at 4 and 20°C, respectively. Most of the uninoculated sites became contaminated with the pathogen due to ice melt. For experiment 2, 3.5 to 3.8 log CFU E. coli O157:H7 per cm2 was attached to the top leaf on the first head. After rinsing with chlorinated water (200 μg/ml), E. coli O157:H7 remained on the surface of the top head (1.8 to 2.0 log CFU/cm2). There was no difference in numbers of E. coli O157:H7 recovered from each sampling site at 4 and 20°C. Results show that E. coli O157:H7 can be transferred onto other produce layers in shipping containers from melted ice made of contaminated water and from contaminated to uncontaminated leaf surfaces.


2009 ◽  
Vol 72 (7) ◽  
pp. 1553-1559 ◽  
Author(s):  
CHRISTOPHER G. THEOFEL ◽  
LINDA J. HARRIS

Inoculum preparation methods can impact growth or survival of organisms inoculated into foods, thus complicating direct comparison of results among studies. The objective of this study was to evaluate preinoculation culture preparation for impact on Escherichia coli O157:H7 inoculated onto leaves of romaine lettuce plants and cut leaf surfaces. E. coli O157:H7 was grown quiescently or shaken at 15, 25, or 37°C to different growth phases in tryptic soy or M9 minimal salts broth or agar. Cells were harvested, washed, and suspended in 0.1% peptone, Milli Q water, or well water and refrigerated for 0 or 18 h. Prepared inoculum was spotted onto cut romaine lettuce (10 μl; 3 × 104 CFU/10 g) or onto romaine lettuce plants (20 μl; 3 × 106 CFU per leaf). Cut lettuce was sealed in 100-cm2 bags (made from a commercial polymer film) and incubated at 5 or 20°C. Lettuce plants were held at 23°C for 24 h. For all tested conditions, levels of E. coli O157:H7 increased at 20°Concut lettuce and decreased on cut lettuce stored at 5°C or on leaves of lettuce plants. At 20°C, preinoculation culture conditions had little impact on growth of E. coli O157:H7 on cut lettuce. However, survival at 5°C was significantly better (P < 0.05) for cultures grown at 15 or 37°C in minimal medium and to late stationary phase. Impact of preinoculation handling on survival on lettuce plants was less clear due to relatively high standard deviations observed among samples.


2012 ◽  
Vol 78 (6) ◽  
pp. 1752-1764 ◽  
Author(s):  
Ryan C. Fink ◽  
Elaine P. Black ◽  
Zhe Hou ◽  
Masayuki Sugawara ◽  
Michael J. Sadowsky ◽  
...  

ABSTRACTAn increasing number of outbreaks of gastroenteritis recently caused byEscherichia coliO157:H7 have been linked to the consumption of leafy green vegetables. Although it is known thatE. colisurvives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identifyE. coligenes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparingE. coliK-12, a model system, andE. coliO157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, includingtnaA(33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsAandybiM) and curli production (csgAandcsgB) were significantly upregulated inE. coliK-12 and O157:H7. BothcsgAandbhsA(ycfR) mutants were impaired in the long-term colonization of the leaf surface, but onlycsgAmutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction ofE. coliK-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.


1999 ◽  
Vol 62 (1) ◽  
pp. 3-9 ◽  
Author(s):  
K. H. SEO ◽  
J. F. FRANK

Confocal scanning laser microscopy was used to observe the location of Escherichia coli O157:H7 on and within lettuce leaves. Sections of leaves (ca. 0.5 by 0.5 cm) were inoculated by submersion in a suspension of E. coli O157:H7 (ca. 107to 108CFU/ml) overnight at 7°C. Fluorescein isothiocyanate–labeled antibody was used to visualize the attached bacteria. E. coli O157:H7 was found attached to the surface, trichomes, stomata, and cut edges. Three-dimensional volume reconstruction of interior portions of leaves showed that E. coli O157:H7 was entrapped 20 to 100 μm below the surface in stomata and cut edges. Agar plate culturing and microscopic observation indicated that E. coli O157:H7 preferentially attached to cut edges, as opposed to the intact leaf surface. Dual staining with fluorescein isothiocyanate–labeled antibody and propidium iodide was used to determine viability of cells on artificially contaminated lettuce leaves after treatment with 20 mg/liter chlorine solution for 5 min. Many live cells were found in stomata and on cut edges following chlorine treatment. E. coli O157:H7 did not preferentially adhere to biofilm produced by Pseudomonas fluorescens on the leaf surface. In contrast to E. coli O157:H7, Pseudomonas adhered to and grew mainly on the intact leaf surface rather than on the cut edges.


2009 ◽  
Vol 72 (10) ◽  
pp. 2046-2055 ◽  
Author(s):  
MOHAMMAD M. OBAIDAT ◽  
JOSEPH F. FRANK

Antimicrobials in the vapor phase might be more effective in inactivating Escherichia coli O157:H7 cells attached to leafy greens than aqueous antimicrobials. We determined the activity of allyl isothiocyanate (AIT), cinnamaldehyde, and carvacrol against E. coli O157:H7 on intact and damaged lettuce and spinach tissue. Samples were treated with various concentrations of antimicrobial in the vapor phase at 0, 4, and 10°C in an enclosed container. On intact lettuce surface, the vapor of the lowest concentration of these antimicrobials inactivated >4 log of E. coli O157:H7 at 0 and 4°C in 4 days and at 10°C in 2 days. However, at the tissue damaged by cutting, the highest concentration reduced the population by 4 log at 0°C and 2 to 4 log at 4°C in 4 days. These concentrations also reduced the population of the pathogen by 1 to 3 log at 10°C in 2 days. The pathogen population on spinach surface was reduced by 1 log less than on lettuce surface. However, reduction of the pathogen within spinach tissue was 2 and 3 log less than within lettuce tissue at 0 and 4°C, respectively. Overall, greater inactivation occurred on lettuce than spinach leaves and on the leaf surfaces than at the damaged area. Using antimicrobials in the vapor phase may improve the safety of refrigerated leafy greens marketed in sealed packages.


2002 ◽  
Vol 65 (9) ◽  
pp. 1388-1393 ◽  
Author(s):  
BRENDAN A. NIEMIRA ◽  
CHRISTOPHER H. SOMMERS ◽  
XUETONG FAN

An outbreak strain of Escherichia coli O157:H7 was inoculated onto closely related but structurally distinct types of lettuce (Lactuca sativa): Boston (butterhead lettuce), iceberg (crisphead lettuce), and green leaf and red leaf (colored variants of looseleaf lettuce). The E. coli O157:H7 was inoculated either onto the surface of cut leaf pieces or into a homogenized leaf suspension. Samples were gamma irradiated, and the radiation sensitivity of the inoculated bacteria was expressed as a D-value (the amount of ionizing radiation necessary to reduce the bacterial population by 90% [kGy]). The recovery of bacteria from nonirradiated leaf pieces was also measured. When inoculated onto the leaf surface, E. coli O157:H7 had significantly stronger radiation sensitivity on red leaf lettuce (D = 0.119 ± 0.004 [standard error]) and green leaf lettuce (D = 0.123 ± 0.003) than on iceberg lettuce (D = 0.136 ± 0.004) or Boston lettuce (D = 0.140 ± 0.003). When E. coli O157:H7 was inoculated into a homogenized leaf suspension, its sensitivity was significantly stronger on iceberg lettuce (D = 0.092 ± 0.002) than on green leaf lettuce (D = 0.326 ± 0.012), Boston lettuce (D = 0.331 ± 0.009), or red leaf lettuce (D = 0.339 ± 0.010), with a threefold difference. Significantly fewer bacteria were recovered from the surface of iceberg lettuce than from the surfaces of the other types of lettuce examined. Following radiation doses of up to 0.5 kGy, the texture (maximum shear strength) of lettuce leaves was measured along the midrib and along the leaf edge for each type of lettuce. There was no meaningful change in texture for any type of lettuce for either leaf section examined at any dose up to 0.5 kGy. These data show (i) that relatively subtle differences between lettuce types can significantly influence the radiation sensitivity of associated pathogenic bacteria and (ii) that doses of up to 0.5 kGy do not soften lettuce leaves.


2009 ◽  
Vol 72 (12) ◽  
pp. 2471-2475 ◽  
Author(s):  
GUODONG ZHANG ◽  
LI MA ◽  
LARRY R. BEUCHAT ◽  
MARILYN C. ERICKSON ◽  
VANESSA H. PHELAN ◽  
...  

Studies were done to determine the effect of heat stress on internalization of Escherichia coli O157:H7 in lettuce subjected to different watering practices during growth. Iceberg and romaine lettuce were grown in sandy soil in an environmental chamber at 23°C during the day and 7°C at night, with a 12-h photoperiod. Thirty days after transplanting seedlings, potting soil was inoculated with a five-strain mixture of green fluorescent protein–labeled E. coli O157:H7 at populations of 4 and 6 log CFU/g of soil. Lettuce plants were exposed to one of two temperature stress regimes: 36°C during the day and 15°C at night for 2 days, or 32°C during the day and 15°C at night for 3 days, both with a 12-h photoperiod. Control plants were held at 23°C during the day and 7°C at night for 3 days. Plants were either watered daily or not watered during the heat stress and control treatments. E. coli O157:H7 was detected by enrichment in all inoculated soil and rhizosphere samples from plants grown in inoculated soil. Less E. coli O157:H7 was detected in inoculated heat-stressed soil than in control soil. From inoculated pots, all leaf surfaces and macerated leaves that had been surface sanitized were negative for E. coli O157:H7. All surface-sanitized macerated roots from control samples and from 143 of 144 samples of inoculated samples were negative for E. coli O157:H7. Heat stress during growth of lettuce did not promote or enhance internalization of E. coli O157:H7, regardless of the moisture content in the soil.


2020 ◽  
Vol 16 (3) ◽  
pp. 373-380
Author(s):  
Mohammad B. Zendeh ◽  
Vadood Razavilar ◽  
Hamid Mirzaei ◽  
Khosrow Mohammadi

Background: Escherichia coli O157:H7 is one of the most common causes of contamination in Lighvan cheese processing. Using from natural antimicrobial essential oils is applied method to decrease the rate of microbial contamination of dairy products. The present investigation was done to study the antimicrobial effects of Z. multiflora and O. basilicum essential oils on survival of E. coli O157:H7 during ripening of traditional Lighvan cheese. Methods: Leaves of the Z. multiflora and O. basilicum plants were subjected to the Clevenger apparatus. Concentrations of 0, 100 and 200 ppm of the Z. multiflora and 0, 50 and 100 ppm of O. basilicum essential oils and also 103 and 105 cfu/ml numbers of E. coli O157:H7 were used. The numbers of the E. coli O157:H7 bacteria were analyzed during the days 0, 30, 60 and 90 of the ripening period. Results: Z. multiflora and O. basilicum essential oils had considerable antimicrobial effects against E. coli O157:H7. Using the essential oils caused decrease in the numbers of E. coli O157:H7 bacteria in 90th days of ripening (P <0.05). Using from Z. multiflora at concentration of 200 ppm can reduce the survival of E. coli O157:H7 in Lighvan cheese. Conclusion: Using Z. multiflora and O. basilicum essential oils as good antimicrobial agents can reduce the risk of foodborne bacteria and especially E. coli O157:H7 in food products.


Sign in / Sign up

Export Citation Format

Share Document