Transfer of Escherichia coli O157:H7 to Romaine Lettuce due to Contact Water from Melting Ice

2008 ◽  
Vol 71 (2) ◽  
pp. 252-256 ◽  
Author(s):  
JIN KYUNG KIM ◽  
MARK A. HARRISON

Ice can be used to chill romaine lettuce and maintain relative humidity during transportation. Escherichia coli O157:H7 may contaminate water used for ice. The objective of this study was to determine the potential for E. coli O157:H7 contamination of romaine lettuce from either ice contaminated with the pathogen or by transfer from lettuce surfaces via melting ice. In experiment 1, lettuce was spot inoculated with E. coli O157:H7 and chilled with ice prepared from uncontaminated tap water. In experiment 2, water inoculated with this pathogen was frozen and used to ice lettuce. Three heads of lettuce were stacked in each container and stored at 4 or 20°C. After the ice melted, E. coli O157:H7 attachment to and recovery from the lettuce leaves were determined. For experiment 1, the population of E. coli O157:H7 attached to inoculated sites averaged 3.8 and 5.5 CFU/cm2 at 4 and 20°C, respectively. Most of the uninoculated sites became contaminated with the pathogen due to ice melt. For experiment 2, 3.5 to 3.8 log CFU E. coli O157:H7 per cm2 was attached to the top leaf on the first head. After rinsing with chlorinated water (200 μg/ml), E. coli O157:H7 remained on the surface of the top head (1.8 to 2.0 log CFU/cm2). There was no difference in numbers of E. coli O157:H7 recovered from each sampling site at 4 and 20°C. Results show that E. coli O157:H7 can be transferred onto other produce layers in shipping containers from melted ice made of contaminated water and from contaminated to uncontaminated leaf surfaces.

2009 ◽  
Vol 72 (7) ◽  
pp. 1553-1559 ◽  
Author(s):  
CHRISTOPHER G. THEOFEL ◽  
LINDA J. HARRIS

Inoculum preparation methods can impact growth or survival of organisms inoculated into foods, thus complicating direct comparison of results among studies. The objective of this study was to evaluate preinoculation culture preparation for impact on Escherichia coli O157:H7 inoculated onto leaves of romaine lettuce plants and cut leaf surfaces. E. coli O157:H7 was grown quiescently or shaken at 15, 25, or 37°C to different growth phases in tryptic soy or M9 minimal salts broth or agar. Cells were harvested, washed, and suspended in 0.1% peptone, Milli Q water, or well water and refrigerated for 0 or 18 h. Prepared inoculum was spotted onto cut romaine lettuce (10 μl; 3 × 104 CFU/10 g) or onto romaine lettuce plants (20 μl; 3 × 106 CFU per leaf). Cut lettuce was sealed in 100-cm2 bags (made from a commercial polymer film) and incubated at 5 or 20°C. Lettuce plants were held at 23°C for 24 h. For all tested conditions, levels of E. coli O157:H7 increased at 20°Concut lettuce and decreased on cut lettuce stored at 5°C or on leaves of lettuce plants. At 20°C, preinoculation culture conditions had little impact on growth of E. coli O157:H7 on cut lettuce. However, survival at 5°C was significantly better (P < 0.05) for cultures grown at 15 or 37°C in minimal medium and to late stationary phase. Impact of preinoculation handling on survival on lettuce plants was less clear due to relatively high standard deviations observed among samples.


2012 ◽  
Vol 75 (11) ◽  
pp. 1920-1929 ◽  
Author(s):  
ANNEMARIE L. BUCHHOLZ ◽  
GORDON R. DAVIDSON ◽  
BRADLEY P. MARKS ◽  
EWEN C. D. TODD ◽  
ELLIOT T. RYSER

Escherichia coli O157:H7 contamination of fresh-cut leafy greens has become a public health concern as a result of several large outbreaks. The goal of this study was to generate baseline data for E. coli O157:H7 transfer from product-inoculated equipment surfaces to uninoculated lettuce during pilot-scale processing without a sanitizer. Uninoculated cored heads of iceberg and romaine lettuce (22.7 kg) were processed using a commercial shredder, step conveyor, 3.3-m flume tank with sanitizer-free tap water, shaker table, and centrifugal dryer, followed by 22.7 kg of product that had been dip inoculated to contain ~106, 104, or 102 CFU/g of a four-strain avirulent, green fluorescent protein–labeled, ampicillin-resistant E. coli O157:H7 cocktail. After draining the flume tank and refilling the holding tank with tap water, 90.8 kg of uninoculated product was similarly processed and collected in ~5-kg aliquots. After processing, 42 equipment surface samples and 46 iceberg or 36 romaine lettuce samples (25 g each) from the collection baskets were quantitatively examined for E. coli O157:H7 by direct plating or membrane filtration using tryptic soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Initially, the greatest E. coli O157:H7 transfer was seen from inoculated lettuce to the shredder and conveyor belt, with all equipment surface populations decreasing 90 to 99% after processing 90.8 kg of uncontaminated product. After processing lettuce containing 106 or 104 E. coli O157:H7 CFU/g followed by uninoculated lettuce, E. coli O157:H7 was quantifiable throughout the entire 90.8 kg of product. At an inoculation level of 102 CFU/g, E. coli O157:H7 was consistently detected in the first 21.2 kg of previously uninoculated lettuce at 2 to 3 log CFU/100 g and transferred to 78 kg of product. These baseline E. coli O157:H7 transfer results will help determine the degree of sanitizer efficacy required to better ensure the safety of fresh-cut leafy greens.


2009 ◽  
Vol 72 (12) ◽  
pp. 2471-2475 ◽  
Author(s):  
GUODONG ZHANG ◽  
LI MA ◽  
LARRY R. BEUCHAT ◽  
MARILYN C. ERICKSON ◽  
VANESSA H. PHELAN ◽  
...  

Studies were done to determine the effect of heat stress on internalization of Escherichia coli O157:H7 in lettuce subjected to different watering practices during growth. Iceberg and romaine lettuce were grown in sandy soil in an environmental chamber at 23°C during the day and 7°C at night, with a 12-h photoperiod. Thirty days after transplanting seedlings, potting soil was inoculated with a five-strain mixture of green fluorescent protein–labeled E. coli O157:H7 at populations of 4 and 6 log CFU/g of soil. Lettuce plants were exposed to one of two temperature stress regimes: 36°C during the day and 15°C at night for 2 days, or 32°C during the day and 15°C at night for 3 days, both with a 12-h photoperiod. Control plants were held at 23°C during the day and 7°C at night for 3 days. Plants were either watered daily or not watered during the heat stress and control treatments. E. coli O157:H7 was detected by enrichment in all inoculated soil and rhizosphere samples from plants grown in inoculated soil. Less E. coli O157:H7 was detected in inoculated heat-stressed soil than in control soil. From inoculated pots, all leaf surfaces and macerated leaves that had been surface sanitized were negative for E. coli O157:H7. All surface-sanitized macerated roots from control samples and from 143 of 144 samples of inoculated samples were negative for E. coli O157:H7. Heat stress during growth of lettuce did not promote or enhance internalization of E. coli O157:H7, regardless of the moisture content in the soil.


2004 ◽  
Vol 67 (7) ◽  
pp. 1377-1383 ◽  
Author(s):  
S. M. L. STEVENSON ◽  
S. R. COOK ◽  
S. J. BACH ◽  
T. A. McALLISTER

To evaluate the potential of using electrolyzed oxidizing (EO) water for controlling Escherichia coli O157:H7 in water for livestock, the effects of water source, electrolyte concentration, dilution, storage conditions, and bacterial or fecal load on the oxidative reduction potential (ORP) and bactericidal activity of EO water were investigated. Anode and combined (7:3 anode:cathode, vol/vol) EO waters reduced the pH and increased the ORP of deionized water, whereas cathode EO water increased pH and lowered ORP. Minimum concentrations (vol/vol) of anode and combined EO waters required to kill 104 CFU/ml planktonic suspensions of E. coli O157:H7 strain H4420 were 0.5 and 2.0%, respectively. Cathode EO water did not inhibit H4420 at concentrations up to 16% (vol/vol). Higher concentrations of anode or combined EO water were required to elevate the ORP of irrigation or chlorinated tap water compared with that of deionized water. Addition of feces to EO water products (0.5% anode or 2.0% combined, vol/vol) significantly reduced (P < 0.001) their ORP values to <700 mV in all water types. A relationship between ORP and bactericidal activity of EO water was observed. The dilute EO waters retained the capacity to eliminate a 104 CFU/ml inoculation of E. coli O157:H7 H4420 for at least 70 h regardless of exposure to UV light or storage temperature (4 versus 24°C). At 95 h and beyond, UV exposure reduced ORP, significantly more so (P < 0.05) in open than in closed containers. Bactericidal activity of EO products (anode or combined) was lost in samples in which ORP value had fallen to ≤848 mV. When stored in the dark, the diluted EO waters retained an ORP of >848 mV and bactericidal efficacy for at least 125 h; with refrigeration (4°C), these conditions were retained for at least 180 h. Results suggest that EO water may be an effective means by which to control E. coli O157:H7 in livestock water with low organic matter content.


2009 ◽  
Vol 72 (10) ◽  
pp. 2028-2037 ◽  
Author(s):  
GUODONG ZHANG ◽  
LI MA ◽  
LARRY R. BEUCHAT ◽  
MARILYN C. ERICKSON ◽  
VANESSA H. PHELAN ◽  
...  

Survival and internalization characteristics of Escherichia coli O157:H7 in iceberg, romaine, and leaf lettuce after inoculation of leaf surfaces and soil were determined. A five-strain mixture of E. coli O157:H7 in water and cow manure extract was used as an inoculum for abaxial and adaxial sides of leaves at populations of 6 to 7 log and 4 log CFU per plant. The five strains were individually inoculated into soil at populations of 3 and 6 log CFU/g. Soil, leaves, and roots were analyzed for the presence and population of E. coli O157:H7. Ten (4.7%) of 212 samples of leaves inoculated on the adaxial side were positive for E. coli O157:H7, whereas 38 (17.9%) of 212 samples inoculated on the abaxial side were positive. E. coli O157:H7 survived for at least 25 days on leaf surfaces, with survival greater on the abaxial side of the leaves than on the adaxial side. All 212 rhizosphere samples and 424 surface-sanitized leaf and root samples from plants with inoculated leaves were negative for E. coli O157:H7, regardless of plant age at the time of inoculation or the location on the leaf receiving the inoculum. The pathogen survived in soil for at least 60 days. Five hundred ninety-eight (99.7%) of 600 surface-sanitized leaf and root samples from plants grown in inoculated soil were negative for E. coli O157:H7. Internalization of E. coli O157:H7 in lettuce leaves and roots did not occur, regardless of the type of lettuce, age of plants, or strain of E. coli O157:H7.


2006 ◽  
Vol 69 (1) ◽  
pp. 6-11 ◽  
Author(s):  
L. SCOTT ◽  
P. McGEE ◽  
J. J. SHERIDAN ◽  
B. EARLEY ◽  
N. LEONARD

Escherichia coli O157:H7 is an important foodborne pathogen that can cause hemorrhagic colitis and hemolytic uremic syndrome. Cattle feces and fecally contaminated water are important in the transmission of this organism on the farm. In this study, the survival of E. coli O157:H7 in feces and water was compared following passage through the animal digestive tract or preparation in the laboratory. Feces were collected from steers before and after oral inoculation with a marked strain of E. coli O157:H7. Fecal samples collected before cattle inoculation were subsequently inoculated with the marked strain of E. coli O157:H7 prepared in the laboratory. Subsamples were taken from both animal and laboratory-inoculated feces to inoculate 5-liter volumes of water. E. coli O157:H7 in feces survived up to 97 days, and survival was not affected by the method used to prepare the inoculating strain. E. coli O157:H7 survived up to 109 days in water, and the bacteria collected from inoculated cattle were detected up to 10 weeks longer than the laboratory-prepared culture. This study suggests that pathogen survival in low-nutrient conditions may be enhanced by passage through the gastrointestinal tract.


2010 ◽  
Vol 73 (2) ◽  
pp. 212-220 ◽  
Author(s):  
ROWAIDA K. KHALIL ◽  
JOSEPH F. FRANK

Recent foodborne illness outbreaks associated with the consumption of leafy green produce indicates a need for additional information on the behavior of pathogenic bacteria on these products. Previous research indicates that pathogen growth and survival is enhanced by leaf damage. The objective of this study was to compare the behavior of Escherichia coli O157:H7 on damaged leaves of baby Romaine lettuce, spinach, cilantro, and parsley stored at three abusive temperatures (8, 12, and 15°C). The damaged portions of leaves were inoculated with approximately 105 CFU E. coli O157:H7 per leaf. The pathogen grew on damaged spinach leaves held for 3 days at 8 and 12°C (P < 0.05), with the population increasing by 1.18 and 2.08 log CFU per leaf, respectively. E. coli O157:H7 did not grow on damaged Romaine leaves at 8 or 12°C, but growth was observed after 8 h of storage at 15°C, with an increase of less than 1.0 log. Growth of E. coli O157:H7 on Romaine lettuce held at 8 or 12°C was enhanced when inocula were suspended in 0.05% ascorbic acid, indicating the possibility of inhibition by oxidation reactions associated with tissue damage. Damaged cilantro and Italian parsley leaves held at 8°C for 4 days did not support the growth of E. coli O157:H7. Behavior of the pathogen in leaf extracts differed from behavior on the damaged tissue. This study provides evidence that the damaged portion of a leafy green is a distinct growth niche that elicits different microbial responses in the various types of leafy greens.


2012 ◽  
Vol 75 (3) ◽  
pp. 480-487 ◽  
Author(s):  
GREG BEZANSON ◽  
PASCAL DELAQUIS ◽  
SUSAN BACH ◽  
ROBIN McKELLAR ◽  
ED TOPP ◽  
...  

Little is known about the influence of abiotic factors such as climate and soil chemistry on the survival of Escherichia coli O157:H7 in field lettuce. We applied a nalidixic acid–resistant derivative of strain ATCC 700728 to field-grown romaine lettuce in two regions in Canada characterized by large variances in soil type and climate. Surviving populations in soil and on lettuce leaves were estimated on sorbitol MacConkey agar supplemented with nalidixic acid. Data were fitted with the Weibull decline function to permit comparison of decay rates in the two experimental sites. E. coli O157:H7 populations fell from 105 to <102 CFU/g on leaves, and <103 CFU/g in soil within 7 days after inoculation. Analysis revealed there was no significant difference between decay rates at the two experimental sites in either environment. The results of this study suggest that the inherent ecological fitness of E. coli O157:H7 ATCC 700728 determines the extent of survival in the production environment.


2003 ◽  
Vol 66 (12) ◽  
pp. 2203-2209 ◽  
Author(s):  
SUSANA SANZ ◽  
MERCEDES GIMÉNEZ ◽  
CARMEN OLARTE

The ability of Listeria monocytogenes and Escherichia coli O157:H7 inoculated by immersion (at 4.6 and 5.5 log CFU/g, respectively) to survive on artichokes during various stages of preparation was determined. Peeling, cutting, and disinfecting operations (immersion in 50 ppm of a free chlorine solution at 4°C for 5 min) reduced populations of L. monocytogenes and E. coli O157:H7 by only 1.6 and 0.8 log units, respectively. An organic acid rinse (0.02% citric acid and 0.2% ascorbic acid) was more effective than a tap water rinse in removing these pathogens. Given the possibility of both pathogens being present on artichokes at the packaging stage, their behavior during the storage of minimally processed artichokes was investigated. For this purpose, batches of artichokes inoculated with L. monocytogenes or E. coli O157:H7 (at 5.5 and 5.2 log CFU/g, respectively) were packaged in P-Plus film bags and stored at 4°C for 16 days. During this period, the equilibrium atmosphere composition and natural background microflora (mesophiles, psychrotrophs, anaerobes, and fecal coliforms) were also analyzed. For the two studied pathogens, the inoculum did not have any effect on the final atmospheric composition (10% O2, 13% CO2) or on the survival of the natural background microflora of the artichokes. L. monocytogenes was able to survive during the entire storage period in the inoculated batches, while the E. coli O157:H7 level increased by 1.5 log units in the inoculated batch during the storage period. The modified atmosphere was unable to control the behavior of either pathogen.


2020 ◽  
Vol 83 (8) ◽  
pp. 1444-1462 ◽  
Author(s):  
GENEVIÈVE COULOMBE ◽  
ANGELA CATFORD ◽  
AMALIA MARTINEZ-PEREZ ◽  
ENRICO BUENAVENTURA

ABSTRACT Foodborne diseases are a major cause of illness in Canada. One of the main pathogens causing cases and outbreaks of foodborne illness in Canada is Escherichia coli O157:H7. From 2008 to 2018, 11 outbreaks of E. coli O157:H7 infection in Canada were linked to leafy greens, including 7 (63.6%) linked to romaine lettuce, 2 (18.2%) linked to iceberg lettuce, and 2 (18.2%) linked to other or unspecified types of leafy greens. The consumption of lettuce in Canada, the behavior of E. coli O157:H7 on lettuce leaves, and the production practices used for romaine and iceberg lettuce do not seem to explain why a higher number of outbreaks of E. coli O157:H7 infection were linked to romaine than to iceberg lettuce. However, the difference in the shape of iceberg and romaine lettuce heads could be an important factor. Among the seven outbreaks linked to romaine lettuce in Canada between 2008 and 2018, an eastern distribution of cases was observed. Cases from western provinces were reported only twice. The consumption of romaine and iceberg lettuce by the Canadian population does not seem to explain the eastern distribution of cases observed, but the commercial distribution, travel distances, and the storage practices used for lettuce may be important factors. In the past 10 years, the majority of the outbreaks of E. coli O157:H7 infection linked to romaine lettuce occurred during the spring (March to June) and fall (September to December). The timing of these outbreaks may be explained by the availability of lettuce in Canada, the growing region transition periods in the United States, and the seasonality in the prevalence of E. coli O157:H7. The consumption of romaine lettuce by the Canadian population does not explain the timing of the outbreaks observed. HIGHLIGHTS


Sign in / Sign up

Export Citation Format

Share Document