Infectivity of Cryptosporidium parvum Oocysts after Storage of Experimentally Contaminated Apples

2010 ◽  
Vol 73 (10) ◽  
pp. 1824-1829 ◽  
Author(s):  
DUMITRU MACARISIN ◽  
MÓNICA SANTÍN ◽  
GARY BAUCHAN ◽  
RONALD FAYER

Irrigation water and washing water have been inferred to be associated with contamination of fresh fruits and vegetables with pathogenic microorganisms infectious for humans. The objective of the present study was to determine whether apples experimentally contaminated with Cryptosporidium oocysts represent a food safety concern. Laser scanning confocal microscopy revealed no morphological changes in Cryptosporidium parvum oocysts attached to apples after 6 weeks of cold storage, suggesting that oocysts might remain viable and possibly infectious during prolonged storage. Mice were fed apple peels from experimentally contaminated apples to determine whether oocysts had remained infectious on apples stored for 4 weeks. All mice developed cryptosporidiosis. To evaluate the strength of oocyst attachment to apples, washing methods that have been reported to be helpful for recovery of oocysts from various foodstuffs were evaluated, except that the intensity of washing was increased in the present study. None of the tested washing methods succeeded in completely removing oocysts from the apple peel. The most efficient removal (37.5%) was achieved by rigorous manual washing in water with a detergent and by agitation in an orbital shaker with Tris–sodium dodecyl sulfate buffer. Glycine and phosphate-buffered saline buffers had no effect on oocyst removal. Scanning electron microscopy revealed that some oocysts were attached in deep natural crevices in the apple exocarp and others were attached to the smooth surface of the peel. Some oocysts were closely associated with what appeared to be an amorphous substance with which they might have been attached to the apple surface.

2007 ◽  
Vol 19 (1) ◽  
pp. 146
Author(s):  
D. J. Kwon ◽  
C. K. Park ◽  
B. K. Yang ◽  
C. I. Kim ◽  
H. T. Cheong

The present study was conducted to control nuclear remodeling types by treatment with caffeine or vanadate, and to examine the microtubule distribution of nuclear transfer embryos (NTs) after nuclear remodeling control and the mitotic spindle assembly and its morphological changes during the first mitosis of NTs in the pig. Enucleated oocytes were treated with 5 mM caffeine or 0.5 mM sodium orthovanadate (vanadate) for 2.5 or 0.5 h to increase or decrease MPF activity before injection of fetal fibroblast cells. Reconstituted eggs were fused by an electric stimulation (ES, 1.5 kV cm-1), activated by a combination of 2 pulses of ES (1.0 kV cm-1), and cultured for 3 h with 2 mM 6-dimethylaminopurine (6-DMAP) at 1 h after fusion treatment. Some matured oocytes were also treated by the same chemicals before parthenogenetic activation under the same conditions as NTs, and cultured in vitro to evaluate the effects of these chemicals on embryo development. NTs and parthenogenetic embryos were cultured in PZM-3 for 20 h or 6 days at 39�C, 5% CO2 in air, respectively. Nuclear remodeling types of NTs were examined at 1 h after fusion (before activation) by the whole-mount method. At least 3 replicates for each experiment were performed. Microtubules and DNA of NTs that were fixed at 1 h or 20 h after fusion were detected by indirect immunocytochemical technique. Images were captured using laser scanning confocal microscopy. Caffeine and vanadate did not affect the development to the blastocyst stage of porcine parthenogenetic embryos. When a nucleus was exposed to oocyte cytoplasm treated with caffeine, premature chromosome condensation (PCC) occurred at a higher rate (82/98, 83.7%) compared to control (42/73, 57.5%) and vanadate-treated (11/91, 12.1%) groups (P < 0.05). The proportion of embryos that did not undergo nuclear envelope breakdown (NEBD) was higher in the vanadate treatment group (87.9%) compared to the caffeine and control groups (16.3 and 42.5%, respectively; P < 0.05). The frequency of embryos showing a γ-tubulin only and both γ- and β-tubulins were 3.9–9.4% and 21.9–34.6%, respectively, in NTs (total 87 embryos) at 1 h after fusion regardless of caffeine and vanadate treatments. In the majority of NTs (61.5–68.6%), microtubules were not observed. At 20 h after fusion, the frequency of the embryos undergoing normal mitosis was similar in the control (17/45, 37.8%) and caffeine (19/43, 44.2%) groups, but it was significantly lower in the vanadate group (7/37, 18.9%; P < 0.05). The present study demonstrates that the nuclear remodeling type of NTs can be controlled by treatment with MPF regulators, caffeine and vanadate, and such treatment is not related to the microtubule distribution in porcine NTs. The finding, however, that the vanadate can delay the mitotic progression of porcine NTs at the first cell cycle may be due to the lack of NEBD and PCC. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD;KRF-2005-042-F00030).


2009 ◽  
Vol 76 (2) ◽  
pp. 555-559 ◽  
Author(s):  
Dumitru Macarisin ◽  
Gary Bauchan ◽  
Ronald Fayer

ABSTRACT Cryptosporidium parvum is a cosmopolitan microscopic protozoan parasite that causes severe diarrheal disease (cryptosporidiosis) in mammals, including humans and livestock. There is growing evidence of Cryptosporidium persistence in fresh produce that may result in food-borne infection, including sporadic cases as well as outbreaks. However, drinking and recreational waters are still considered the major sources of Cryptosporidium infection in humans, which has resulted in prioritization of studies of parasite etiology in aquatic environments, while the mechanisms of transmission and parasite persistence on edible plants remain poorly understood. Using laser scanning confocal microscopy together with fluorescein-labeled monoclonal antibodies, C. parvum oocysts were found to strongly adhere to spinach plants after contact with contaminated water, to infiltrate through the stomatal openings in spinach leaves, and to persist at the mesophyll level. These findings and the fact that this pathogenic parasite resists washing and disinfection raise concerns regarding food safety.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


Author(s):  
Hakan Ancin

This paper presents methods for performing detailed quantitative automated three dimensional (3-D) analysis of cell populations in thick tissue sections while preserving the relative 3-D locations of cells. Specifically, the method disambiguates overlapping clusters of cells, and accurately measures the volume, 3-D location, and shape parameters for each cell. Finally, the entire population of cells is analyzed to detect patterns and groupings with respect to various combinations of cell properties. All of the above is accomplished with zero subjective bias.In this method, a laser-scanning confocal light microscope (LSCM) is used to collect optical sections through the entire thickness (100 - 500μm) of fluorescently-labelled tissue slices. The acquired stack of optical slices is first subjected to axial deblurring using the expectation maximization (EM) algorithm. The resulting isotropic 3-D image is segmented using a spatially-adaptive Poisson based image segmentation algorithm with region-dependent smoothing parameters. Extracting the voxels that were labelled as "foreground" into an active voxel data structure results in a large data reduction.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 861
Author(s):  
Jacopo Cardellini ◽  
Arianna Balestri ◽  
Costanza Montis ◽  
Debora Berti

In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.


2001 ◽  
Vol 34 (15) ◽  
pp. 5186-5191 ◽  
Author(s):  
Hiroshi Jinnai ◽  
Hiroshi Yoshida ◽  
Kohtaro Kimishima ◽  
Yoshinori Funaki ◽  
Yoshitsugu Hirokawa ◽  
...  

1994 ◽  
Vol 42 (11) ◽  
pp. 1413-1416 ◽  
Author(s):  
S L Erlandsen ◽  
E M Rasch

We investigated direct measurement of the DNA content of the parasitic intestinal flagellate Giardia lamblia through quantitation by Feulgen microspectrophotometry and also by visualization of Feulgen-stained DNA chromosomes within dividing cells by laser scanning confocal microscopy. Individual trophozoites of Giardia (binucleate) contained 0.144 +/- 0.018 pg of DNA/cell or 0.072 pg DNA/nucleus. Giardia lamblia cysts (quadranucleate) contained 0.313 +/- 0.003 pg DNA or 0.078 pg DNA/nucleus. The genome size (C) value per nucleus ranged between 6.5-7.1 x 10(7) BP for trophozoites and cysts, respectively. Confocal microscopic examination of Giardia trophozoites undergoing binary fission revealed five chromosome-like bodies within each nucleus. Further information about genome size and DNA content within different Giardia species may help to clarify the pivotal role of these primitive eukaryotic cells in evolutionary development.


2014 ◽  
Vol 926-930 ◽  
pp. 1124-1127
Author(s):  
Zhen Xun Jin ◽  
Li Li Zhang ◽  
Yan Wang ◽  
Lin Chuan Zeng ◽  
Yang Yu ◽  
...  

The aim of this study is to investigate the effects and mechanism of chloroquine (CQ) on the apoptosis induced by cisplatin in human gastric cancer BGC823 cells. MTT assay was used to detect the state of cell growth. The appearances of cellular apoptosis were detected by laser scanning confocal microscopy and light microscopy. The expressions of LC3 and p62 were detected by laser scanning confocal microscopy. MTT tests showed that the non-toxic dose of CQ could increase the inhibition rate of BGC823 cells induced by cisplatin. Under the light microscope, the ratio of apoptotic cells in the group treated with non-toxic dose of CQ combined with cisplatin was higher than that in the group treated with cisplatin alone. Hoechst33342 staining showed that the ratio of apoptotic cells in the combination group was higher than that in the cisplatin group. The expression and colocalization of LC3 and p62 proteins were significantly increased in the combination group. These results indicate that CQ can enhance the cell apoptosis induced by cisplatin in BGC823 cells, which is through the inhibition of autophagy.


2004 ◽  
Vol 842 ◽  
Author(s):  
Seiji Miura ◽  
Hiroyuki Okuno ◽  
Kenji Ohkubo ◽  
Tetsuo Mohri

ABSTRACTIn-situ observation of the formation and disappearance of the surface relief associated with the twinning during the order-disorder transitions among CuAu-I (L10), CuAu-II (PAP) and disordered fcc phases was conducted using Confocal Scanning Laser Microscopy equipped with a gold image furnace. The Retro effect was confirmed in poly-crystal samples, however no evidence was found in single-crystal samples. Also observed in poly-crystal samples are that the disordering temperature detected by the disappearing of relieves is different from grain to grain, and that grain boundary cracking alleviates the Retro effect. The observed phenomena were explained based on the crystallographic orientation relationship among grains investigated by FESEM/EBSD in terms of the elastic strain effect around grain boundaries induced by transition. It was confirmed that in each grain the surface relieves correspond to a set of two {011} planes having a <100> axis perpendicular to both planes in common. It was also found that the larger the average strain of two neighboring grains is, the lower the transition temperature. This observation was explained by the stress effect on the stability of a phase.


Sign in / Sign up

Export Citation Format

Share Document