scholarly journals Wind Power Prediction Based on LS-SVM Model with Error Correction

2017 ◽  
Vol 17 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Y. ZHANG ◽  
P. WANG ◽  
T. NI ◽  
P. CHENG ◽  
S. LEI
2019 ◽  
Vol 11 (2) ◽  
pp. 512 ◽  
Author(s):  
Chao Fu ◽  
Guo-Quan Li ◽  
Kuo-Ping Lin ◽  
Hui-Juan Zhang

Renewable energy technologies are essential contributors to sustainable energy including renewable energy sources. Wind energy is one of the important renewable energy resources. Therefore, efficient and consistent utilization of wind energy has been an important issue. The wind speed has the characteristics of intermittence and instability. If the wind power is directly connected to the grid, it will impact the voltage and frequency of the power system. Short-term wind power prediction can reduce the impact of wind power on the power grid and the stability of power system operation is guaranteed. In this study, the improved chicken swarm algorithm optimization support vector machine (ICSO-SVM) model is proposed to predict the wind power. The traditional chicken swarm optimization algorithm (CSO) easily falls into a local optimum when solving high-dimensional problems due to its own characteristics. So the CSO algorithm is improved and the ICSO algorithm is developed. In order to verify the validity of the ICSO-SVM model, the following work has been done. (1) The particle swarm optimization (PSO), ICSO, CSO and differential evolution algorithm (DE) are tested respectively by four standard testing functions, and the results are compared. (2) The ICSO-SVM and CSO-SVM models are tested respectively by two sets of wind power data. This study draws the following conclusions: (1) the PSO, CSO, DE and ICSO algorithms are tested by the four standard test functions and the test data are analyzed. By comparing it with the other three optimization algorithms, the ICSO algorithm has the best convergence effect. (2) The number of training samples has an obvious impact on the prediction results. The average relative error percentage and root mean square error (RMSE) values of the ICSO model are smaller than those of CSO-SVM model. Therefore, the ICSO-SVM model can efficiently provide credible short-term predictions for wind power forecasting.


2013 ◽  
Vol 333-335 ◽  
pp. 1233-1238
Author(s):  
Jing Wang ◽  
Yu Zhang ◽  
Kun Xia ◽  
Qiang Qiang Wang

With the disadvantages of volatility, intermittent and randomness of wind power, a research on constructing a fairly accurate prediction model is imperative to improve the quality of power system. Considering the optimization ability of heuristic algorithm and the regression ability of support vector machine, a HA-SVM model is constructed.Case study shows that, compared with other heuristic algorithms, the search efficiency and speed of differential evolution are good, and the prediction accuracy of the model is high.


2013 ◽  
Vol 392 ◽  
pp. 622-627 ◽  
Author(s):  
Xiao Jing Dang ◽  
Hao Yong Chen ◽  
Xiao Ming Jin

In this paper, a method for wind speed forecasting based on Empirical Mode Decomposition and Support Vector machine is proposed. Compared with the approach based on Support Vector machine only, the method in this paper use EMD to decompose the data of wind power into several independent intrinsic mode functions (IMF),then model each component with the SVM model and get the final value of the overall wind power prediction. Experiments show the efficiency of the approach with a higher forecasting accuracy.


2015 ◽  
Vol 738-739 ◽  
pp. 417-422 ◽  
Author(s):  
Xin Zhang ◽  
Guo Chu Chen

In view of the traditional support vector machine (SVM) model in wind power prediction parameter selection problems, this paper introduced a model which using artificial colony algorithm to seek the optimal parameters of support vector machine. The experimental results show that the SVM model of artificial swarm optimization application and prediction is effective, makes the forecast precision is improved.


Author(s):  
Gao Yang ◽  
Shu Xinlei ◽  
Liu Baoliang ◽  
Sun Wenzhong ◽  
Zhao Mingjiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document