scholarly journals Classification of Diabetic Retinopathy disease with Transfer Learning using Deep Convolutional Neural Networks

2021 ◽  
Vol 21 (3) ◽  
pp. 49-56
Author(s):  
K. SOMASUNDARAM ◽  
P. SIVAKUMAR ◽  
D. SURESH
Author(s):  
Sohaib Asif ◽  
Yi Wenhui ◽  
Hou Jin ◽  
Yi Tao ◽  
Si Jinhai

AbstractThe COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A vital step in the combat towards COVID-19 is a successful screening of contaminated patients, with one of the key screening approaches being radiological imaging using chest radiography. This study aimed to automatically detect COVID‐ 19 pneumonia patients using digital chest x‐ ray images while maximizing the accuracy in detection using deep convolutional neural networks (DCNN). The dataset consists of 864 COVID‐ 19, 1345 viral pneumonia and 1341 normal chest x‐ ray images. In this study, DCNN based model Inception V3 with transfer learning have been proposed for the detection of coronavirus pneumonia infected patients using chest X-ray radiographs and gives a classification accuracy of more than 98% (training accuracy of 97% and validation accuracy of 93%). The results demonstrate that transfer learning proved to be effective, showed robust performance and easily deployable approach for COVID-19 detection.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


2017 ◽  
Vol 14 (4) ◽  
pp. 549-553 ◽  
Author(s):  
Grant J. Scott ◽  
Matthew R. England ◽  
William A. Starms ◽  
Richard A. Marcum ◽  
Curt H. Davis

Sign in / Sign up

Export Citation Format

Share Document