Dermestes frischii and D. undulatus (Coleoptera: Dermestidae) on a Human Corpse in Southern Italy: First Report

2017 ◽  
Vol 25 (2) ◽  
pp. 180-184 ◽  
Author(s):  
Teresa Bonacci ◽  
Vannio Vercillo ◽  
Mark Benecke
Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 278-278 ◽  
Author(s):  
F. Nigro ◽  
V. Sion ◽  
I. Antelmi ◽  
E. Choueiri ◽  
W. Habib ◽  
...  
Keyword(s):  

Plant Disease ◽  
1999 ◽  
Vol 83 (5) ◽  
pp. 487-487 ◽  
Author(s):  
L. Corazza ◽  
L. Luongo ◽  
M. Parisi

A leaf spot of kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang & A. R. Ferg.) leaves was recently observed on plants of the cultivar Hayward in an orchard near Salerno, in southern Italy. The affected plants showed early severe defoliation. The fungus isolated from the infected leaves was identified as Alternaria alternata (Fr.:Fr.) Keissl., based on conidial morphological characteristics. Pathogenicity tests were made by inoculating detached leaves of male pollinator cultivar Tomuri and the female cultivars Hayward and Bruno with a 7-mm disk taken from actively growing cultures of the fungus on potato dextrose agar (PDA). After 14 days, necrotic leaf spots developed and A. alternata was consistently isolated from the inoculated leaves. A. alternata has been observed as a pathogen on leaves and fruits in New Zealand. In the Mediterranean, it has been reported in Israel (2) and in the island of Crete (1). This is the first report of Alternaria leaf spot on kiwifruit in Italy. References: (1) V. A. Bourbos and M. T. Skoudridakis. Petria 7:111, 1997. (2) A. Sive and D. Resnizky. Alon Hanotea 41:409, 1987.


Plant Disease ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 764-764 ◽  
Author(s):  
T. Yaseen ◽  
Y. Ahmed ◽  
A. M. D'Onghia ◽  
M. Digiaro

During a survey for the sanitary status of stone fruits in southern Italy (Apulia region), symptoms of low vigor, sparse foliage, and chlorosis of leaves, frequently leading to decline or death of the plants, were observed on 3- to 5-year-old peach trees (Prunus persica) cvs. Tardi Belle, Zee Lady, and O'Henry grafted on GF677. Brown-to-black discolorations of the wood were observed in cross-sections of the trunks just below the graft union. Samples were collected from May to June 2010 from two symptomatic orchards in Brindisi and Foggia provinces. Small pieces of brownish, vascular wood and necrotic root tissues were surface disinfested, placed onto potato dextrose agar (PDA), and incubated for 7 days at 25°C in the dark. Single-conidial isolates were subsequently grown on PDA at 25°C for 10 days. Fungal colonies were presumptively identified as members of the genus Cylindrocarpon on the basis of their morphological and conidial characteristics. On PDA, the isolates developed abundant mycelium, which gradually became yellowish or partially brownish. Macroconidia were predominantly three septate, straight and cylindrical with both ends broadly rounded. Chlamydospores and ovoidal microconidia were observed on synthetic nutrient-poor agar (1). Sequence of the ribosomal internal transcribed spacer (ITS) region was obtained using universal primers (ITS6-ITS4) and deposited in GenBank (Accession No. HE577846). This sequence revealed 100% genetic identity with a sequence from Cylindrocarpon pauciseptatum Schroers & Crous (Accession No. EF607090), a recently described species (3). In nature, several species of the genus Cylindrocarpon affect a large number of woody plants, mainly grapevine, olive, and stone fruits, in which they attack the root surface (2). To verify Koch's postulates, the roots of 20 3-month-old peach seedlings (GF305) were dipped for 30 min in a spore suspension of the fungus (1 × 108 conidia ml–1). Seedlings were then transplanted in an artificial soil mix and held under controlled conditions in a greenhouse at 24°C. Typical black-foot symptoms developed on 92% of the inoculated plants within 3 months, whereas the control plants, whose roots had been dipped in distilled water, remained healthy. C. pauciseptatum was reisolated from infected tissues and internal vascular lesions of 45% of the inoculated plants, but none of the plants used as controls, fulfilling Koch's postulates. To our knowledge, this is the first report of this pathogen on peach in the Apulia Region of Italy. Currently, C. pauciseptatum is limited to a few orchards where presumably it was introduced with infected propagating material from extra-regional nurseries. C. pauciseptatum has the potential to negatively affect the stone fruit industry in Italy including reducing nursery production and productivity and vigor of trees in orchards, or even rapid death of young trees. References: (1) W. Gams et al. CBS Course of Mycology. 4th ed. Centraalbureau voor Schimmelcultures, Baarn, the Netherlands, 1998. (2) M. E. S. Hernandez et al. Eur. J. Plant Pathol. 104:347, 1998. (3) H. J. Schroers et al. Mycol. Res. 112:82, 2008.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 995-995 ◽  
Author(s):  
F. De Curtis ◽  
D. Palmieri ◽  
D. Vitullo ◽  
G. Lima

Epidemiological investigations in representative chickpea (Cicer arietinum L.) fields in southern Italy (Larino, Campobasso, 41°50′45″ N, 14°55′28″ E) identified severe withering (25 to 51%) of plants during flowering. Diseased plants showed a reduced total root biomass associated with less vigorous and chlorotic foliage. Browning and necrosis of subcortical and xylematic tissues of the crown and main roots were observed in affected plants. Symptomatic root and stem portions from 50 plants were sampled, surface disinfected with a sodium hypochlorite water solution (2% v/v for 2 min), rinsed with sterile distilled water, and placed in petri dishes containing potato dextrose agar with streptomycin sulfate (200 mg/l) and incubated at 25°C for 10 days. The most frequent fungal colony isolated showed macro- and microscopic characters specific of the genus Fusarium (3), with falcate and three-septate macroconidia (24.0 to 43.8 μm long) and microconidia (6.8 to 10.4 μm long) with zero or one septa. The ribosomal DNA of the fungal isolate processed by PCR using the ITS1F/ITS4 primers (2) produced an amplicon of 545 bp (ENA, Accession No. HG423346). A BLAST search with the amplified sequence in the database of the International Mycological Association ( www.mycobank.org ) revealed 99% identity with F. oxysporum sequences. Additional molecular analysis using the specific primers Foc0-12/Foc0-12rf for F. oxysporum f.sp. ciceris (Foc) produced an amplicon only in the chickpea virulent strain Foc-7952, race 0 (1) used as control; furthermore, PCR amplification for the Pisatin Demetylase gene by using the specific primers PDAF2a and PDAR3a (4) yielded the expected amplicon only for the new isolate, whereas no amplification was obtained with the control strain Foc-7952. Pathogenicity assays were carried out to complete Koch's postulates. To this aim, horticultural peat was infested with a conidial suspension (1 × 104 conidia/g of soil) from the new fungal pathogen, dispensed in plastic pots, and sown with surface sterilized seeds of chickpea (cv. Real, ISEA, Italy). Uncontaminated peat was used as control. For both treatments, 3 replicates of 10 seeds were used and experiments repeated twice. The plastic pots were kept in a growth chamber (28°C; 70% RH; 15/9 h light/dark) where the first disease symptoms on plants appeared 20 days after sowing. At the end of the experiments, all plants inoculated with the new isolate showed a high disease severity (98%), whereas non-inoculated plants remained healthy. The seedlings from infested soil demonstrated the same symptoms previously observed in the field, and after re-isolation, the causal agent demonstrated the same morphological features of the isolate used for inoculation. Pathogenicity tests were performed on pea, faba bean, melon, and tomato by using three cultivars for each crop. The results demonstrated high virulence of the new isolate of F. oxysporum f.sp. pisi (Fop) on both chickpea and pea with seed germination reduction, rot on main and secondary roots and cotyledonary leaves, and root biomass reduction and foliage chlorosis. No symptoms were observed on other inoculated vegetal species. Collectively, data of our investigation allow us to affirm that this is the first report of Fop as a new pathogen of chickpea. This result has great economic importance since it enables specific monitoring and management plans for this new disease caused by Fop on chickpea, a key crop for human and animal nutrition. References: (1) M. M. Jiménez-Gasco and R. M. Jiménez-Díaz, Phytopathology 93:201, 2003. (2) I. Larena et al. J. Biotechnol. 75:187, 1999. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006. (4) N. A. Milani et al. Fungal Genet. Biol. 933:942, 2012.


Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1153-1153 ◽  
Author(s):  
S. O. Cacciola ◽  
G. E. Agosteo ◽  
A. Pane

Olive (Olea europea L.) is an economically important crop in Italy and is planted on about 1 million ha. The Apulia, Calabria, and Sicily regions of Southern Italy account for about 70% of the production. Many new plantations have been established during the last 10 years. In summer 1999, 1- to 2-year-old olive trees (cv. Carolea) with decline symptoms were observed in new plantations in Catanzaro Province (Calabria). The symptoms associated with the root rot were leaf chlorosis, defoliation, wilting, twig dieback, and eventual plant collapse. In some cases, more than 40% of the trees were affected. A Phytophthora sp. was isolated consistently from rotted rootlets of diseased trees using a selective medium (2). Single-zoospore isolates were obtained from the colonies. The species isolated from olive roots was identified as P. palmivora (E. Butler) E. Butler on the basis of morphological and cultural characters according to Erwin and Ribeiro (1). All isolates produced papillate sporangia, which were elliptical to ovoid, caducous (mean pedicel length = 5 µm), with a length-breadth ratio of 1.8. In addition, some isolates produced subglobose, non-papillate sporangia with a length-breadth ratio ranging from 1.2 to 1.5. Electrophoresis of mycelial proteins on polyacrylamide gels confirmed that all isolates were pure cultures and that they all belonged to the same species. The electrophoretic banding patterns of total soluble mycelial proteins and eight isozymes (alkaline phosphatase, esterase, fumarase, NAD-glucose dehydrogenase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, malate dehydrogenase, and superoxide dismutase) of all olive isolates were identical to those of two strains of P. palmivora from parlor palm and from pittosporum. Conversely, they were clearly distinct from the electrophoretic banding patterns of reference isolates of P. cactorum (Lebert & Cohn) Schroter, P. capsici Leonian, P. citrophthora (R. E. Sm. & E. H. Sm.) Leonian, and P. nicotianae van Breda de Haan. All isolates of P. palmivora from olive were of the A1 mating type. The pathogenicity of four P. palmivora isolates from olive, two producing only typical and two producing both types of sporangia, was tested in the greenhouse at 18 to 25°C, using 20 1-year-old rooted cuttings of olive cv. Carolea for each isolate. Twenty noninoculated cuttings were used as a control. The inoculum for pathogenicity tests was produced on autoclaved rice grains moistened with V-8 juice. Cuttings were transplanted to pots filled with soil infested with inoculum at 2% (wt/vol). Control plants were grown in pots containing a mixture of soil and 2% autoclaved rice. After transplanting, all pots were flooded once a week for 24 h by plugging the drain hole of the pot. One month after planting, all the plants in infested soil had died and no difference in virulence was observed among the isolates. Control plants remained healthy. P. palmivora was reisolated from the roots of symptomatic plants. Pathogenicity tests were repeated twice with similar results. In a survey of nurseries in Southern Italy, P. palmivora was recorded frequently from roots of young olive trees suggesting that infections originated from nurseries. This is the first report from Italy of P. palmivora on olive. This species has been described recently as a pathogen of olive in Spain (3). References: (1) D. C. Erwin and O. K. Ribeiro. 1996. Phytophthora Diseases Worldwide. American Phytopathological Society. St. Paul, MN. (2) H. Masago et al. Phytopathology 67:25, 1977. (3) M. E. Sanchez Hernandez et al. Eur. J. Plant Pathol. 104:347, 1998.


2020 ◽  
Vol 152 (2) ◽  
pp. 75-78
Author(s):  
Veronica Vizzarri ◽  
Carmine Novellis ◽  
Pierluigi Rizzo

The eulophid Baryscapus silvestrii Viggiani & Bernardo is reported for the first time in the Calabria region (Southern Italy). Adults of the eulophid emerged in September 2019 from olive fruit fly Bactrocera oleae (Diptera Tephritidae) puparia detected during a survey in an experimental olive groove in Mirto Crosia in Cosenza province.


Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 636-636 ◽  
Author(s):  
A. Pane ◽  
S. L. Cosentino ◽  
V. Copani ◽  
S. O. Cacciola

Hemp (Cannabis sativa L.), family Cannabaceae, is an annual herbaceous plant that is 1.5 to 4.0 m tall and native to the Caucasus Region, northern India, and Iran. It is cultivated in warm to temperate regions worldwide for its fiber, oil, and psychoactive substances. In Europe, commercial plantings have decreased from 52,872 ha in 1989 to 18,716 ha in 2005. Recently however, cultivation of hemp as a natural fiber species has been encouraged by European Union policy (2). During the summer of 2003, patches of dead plants were observed in test plots of 12 monoecious and dioecious hemp cultivars (Beniko, Epsylon 68, Felina 34, Ferimon, Fedora 17, Futura 75, Bialobrzeskie, Dioica 88, Fibranova, Tiborszallasi, Lovrin, and Carmagnola) in an experimental field near Catania (eastern Sicily) previously planted to artichoke (Cynara scolymus L.). Plots were irrigated with a drip irrigation system. Symptoms were first detected in July with day/night temperatures between 35 and 26°C. Infected plants showed a dark brown-to-tan discoloration of the stem near the soil line. As disease progressed, the rot extended down to the crown and taproot, foliage became yellow, and the entire plant eventually collapsed. An extensive white, cottony mycelium and numerous spherical tan-to-dark brown sclerotia (0.5 to 4.0 mm in diameter) developed externally on infected tissues and soil. As much as 60% of the plants were affected in a single plot. Monoecious cultivars that had been planted earlier escaped the disease. Isolations from diseased tissues were performed by plating symptomatic tissues previously disinfected for 1 min in 1% NaOCl and rinsed in sterile water on acidified potato dextrose agar (pH 4.5). Isolations consistently yielded a fungus whose characters corresponded to Sclerotium rolfsii Sacc. (teleomorph Athelia rolfsii (Curzi) Tu & Kimbrough). Pathogenicity of two isolates obtained from infected plants was confirmed by inoculating 120-day-old hemp plants grown in individual pots. Twenty plants for each of the above listed cultivars (10 plants for each isolate) were inoculated by applying toothpick tips (5 mm) colonized by S. rolfsii to the lower part of the stem. Ten noninoculated plants served as controls. Plants were kept in a greenhouse with temperatures between 26 and 32°C and 95% relative humidity. High soil moisture was maintained with frequent watering. All inoculated plants showed blight and basal stem rot after 2 weeks, irrespective of the cultivar. By the third week, plants began to dry up and mycelium and sclerotia developed on the crown. Noninoculated controls remained symptomless. S. rolfsii was reisolated from inoculated plants. Although S. rolfsii has been reported on hemp in India since the 1930s (3), to our knowledge, this is the first report of southern blight caused by this fungus on C. sativa in Sicily and southern Italy. Residues of artichoke, a very susceptible host of S. rolfsii (1), might have been the source of inoculum for this outbreak on hemp. Most likely, high summer temperatures and overirrigation exacerbated the disease severity. References: (1) C. Cariddi and R. Lops. La Difesa delle Piante 19(1):27, 1996. (2) S. L. Cosentino et al. Agroindustria 2:137, 2003. (3) G. P. Hector. Ann. Rep. Dep. Agric. Bengal 35, 1931.


Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1825-1825 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
G. Ortu ◽  
M. L. Gullino

During spring 2012, symptoms of an unusual leaf spot disease were observed in several commercial greenhouses near Salerno (southern Italy) on plants of Diplotaxis tenuifolia (cv Selvatica). The first symptoms on leaves of affected plants consisted of small (1 mm) black-brown spots of irregular shape, later coalescing into larger spots, 1 cm in diameter. Spots were surrounded by a yellow halo, and were mostly located on the foliar limb, rib, and petiole. Affected leaves were often distorted, appearing hook-like. The disease was severe under 75 to 90% RH, at air temperature of 20 to 26°C, and caused severe production losses on about 50 ha. Particularly, affected tissues rotted quickly after packaging and during transit and commercialization of processed rocket. Diseased tissue was excised, immersed in a solution containing 1% sodium hypochlorite for 60 s, rinsed in water, then placed on potato dextrose agar (PDA) medium, containing 25 mg/l of streptomycin sulphate. After 5 days, a fungus developed producing a whitish-orange mycelium when incubated under 12 h/day of fluorescent light at 22°C. The isolates obtained were purified on PDA. On this medium, they produced hyaline elliptical and ovoid conidia, sometimes one-septate, measuring 4.5 to 9.2 × 1.7 to 3.5 (average 6.8 × 2.6) μm. Conidia were born on phialides, measuring 6.8 to 20.2 × 1.3 to 3.1 (average 16.5 × 2.1) μm. Such characteristics are typical of Plectosphaerella sp. (2). The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS1/ITS4 (3) and sequenced. BLAST analysis of the 519-bp segment showed a 98% similarity with the sequence of Plectosphaerella cucumerina (GenBank Accession No. AB469880). The nucleotide sequence has been assigned the GenBank Accession JX185769. To confirm pathogenicity, tests were conducted on 45-day-old D. tenuifolia plants. Plants (21/treatment), grown in 15 liter pots (7 plants/pot) were inoculated by spraying a 1 × 106 CFU/ml conidial suspension of one isolate of P. cucumerina, prepared from 10-day-old cultures, grown on PDA. Inoculated plants were maintained in a growth chamber at 23 ± 1°C, at 90% RH for 4 days. Non-inoculated plants served as control. Inoculated plants showed the typical first leaf spots 6 days after the artificial inoculation. Four days later, spots enlarged and leaves became distorted, showing chlorosis. Non-inoculated plants remained healthy. P. cucumerina was reisolated from inoculated plants. The pathogenicity test was conducted twice with identical results. This is, to our knowledge, the first report of P. cucumerina on D. tenuifolia in Italy as well as worldwide. P. cucumerina has been described as associated with root and collar rots of other horticultural crops in southern Italy (1). Due to the importance of the crop in Italy, this disease can cause serious economic losses. References: (1) A. Carlucci et al., Persoonia, 28:34, 2012. (2) M. E. Palm et al. Mycologia, 87:397, 1995. (3) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1498-1498 ◽  
Author(s):  
S. Pollastro ◽  
C. Dongiovanni ◽  
D. Gerin ◽  
P. Pollastro ◽  
G. Fumarola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document