Sleep Deprivation and Performance: The Role of Working Memory

2013 ◽  
pp. 189-200
2011 ◽  
pp. 1564-1585
Author(s):  
Peter E. Doolittle ◽  
Andrea L. McNeill ◽  
Krista P. Terry ◽  
Stephanie B. Scheer

The current emphasis, in education and training, on the use of instructional technology has fostered a shift in focus and renewed interest in integrating human learning and pedagogical research. This shift has involved the technological and pedagogical integration between learner cognition, instructional design, and instructional technology, with much of this integration focusing on the role of working memory and cognitive load in the development of comprehension and performance. Specifically, working memory, dual coding theory, and cognitive load are examined in order to provide the underpinnings of Mayer’s (2001) Cognitive Theory of Multimedia Learning. The bulk of the chapter then addresses various principles based on Mayer’s work and provides well documented web-based examples.


Author(s):  
Claire Textor ◽  
Richard Pak

As automation continues to pervade people’s lives, it is critical to understand the reasons why some interactions are successful while others fail. Previous research attempting to explain this variability in HAI through individual differences in working memory has been mixed. Research in cognitive psychology has demonstrated the importance of attention control as a fundamental mechanism underlying higher-order cognition. In the realm of automation, early work has demonstrated a link between attention control and performance (Foroughi et al., 2019). The purpose of this exploratory study was to investigate the relationship between attention control and attitudes towards automation, particularly trust. Our results found attention control to be correlated with propensity to trust and negative attitudes towards robots. These results encourage further inquiry into the role of attention control in HAI.


2012 ◽  
Vol 55 (3) ◽  
pp. 669-682 ◽  
Author(s):  
Beula M. Magimairaj ◽  
James W. Montgomery

Purpose This study investigated the role of processing complexity of verbal working memory tasks in predicting spoken sentence comprehension in typically developing children. Of interest was whether simple and more complex working memory tasks have similar or different power in predicting sentence comprehension. Method Sixty-five children (6- to 12-year-olds) completed a verbal working memory (listening) span task that varied in syntactic processing difficulty (simple sentences representing a “simple working memory task,” complex sentences representing a “complex working memory task”) and a standardized sentence comprehension test. Results Word recall on the simple and complex working memory tasks correlated with each other. Both memory tasks also correlated with children's sentence comprehension. Regression analyses showed that the simple working memory task remained a significant predictor of comprehension even after accounting for variance associated with age and performance on the complex working memory task. Conclusions Results were interpreted to suggest that relative to more complex verbal working memory tasks, simple tasks are more robust predictors of children's sentence comprehension because they represent a basic yet robust index of working memory that sufficiently captures controlled attentional focus.


Author(s):  
Peter E. Doolittle ◽  
Andrea L. McNeill ◽  
Krista P. Terry ◽  
Stephanie B. Scheer

The current emphasis, in education and training, on the use of instructional technology has fostered a shift in focus and renewed interest in integrating human learning and pedagogical research. This shift has involved the technological and pedagogical integration between learner cognition, instructional design, and instructional technology, with much of this integration focusing on the role of working memory and cognitive load in the development of comprehension and performance. Specifically, working memory, dual coding theory, and cognitive load are examined in order to provide the underpinnings of Mayer’s (2001) Cognitive Theory of Multimedia Learning. The bulk of the chapter then addresses various principles based on Mayer’s work and provides well documented web-based examples.


2003 ◽  
Vol 12 (3) ◽  
pp. 376-402 ◽  
Author(s):  
J.P Maxwell ◽  
R.S.W Masters ◽  
F.F Eves

Author(s):  
Peter E. Doolittle ◽  
Andrea L. McNeill ◽  
Krista P. Terry ◽  
Stephanie B. Scheer

The current emphasis, in education and training, on the use of instructional technology has fostered a shift in focus and renewed interest in integrating human learning and pedagogical research. This shift has involved the technological and pedagogical integration between learner cognition, instructional design, and instructional technology, with much of this integration focusing on the role of working memory and cognitive load in the development of comprehension and performance. Specifically, working memory, dual coding theory, and cognitive load are examined in order to provide the underpinnings of Mayer’s (2001) Cognitive Theory of Multimedia Learning. The bulk of the chapter then addresses various principles based on Mayer’s work and provides well documented web-based examples.


2010 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
Roger Gilabert ◽  
Carmen Muñoz

The goal of this study is to investigate the role of working memory capacity in L2 attainment and performance. The study uses an L1 reading span task to measure working memory of a group of 59 high- intermediate/advanced learners of English, and a film retelling task to measure their oral production. The analysis first showed a moderate to high correlation between proficiency measured by a general proficiency test and learners’ fluency, lexical complexity, and accuracy but not structural complexity on the retelling task. Secondly, no correlation was found between overall proficiency and working memory. Thirdly, a weak correlation was found between fluency and lexical complexity, and working memory. When the group was split into top and bottom levels of proficiency, moderate correlations were found between lexical complexity and working memory only for the high-proficiency group. The results are discussed in the light of previous research.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


2015 ◽  
Vol 223 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Evelyn H. Kroesbergen ◽  
Marloes van Dijk

Recent research has pointed to two possible causes of mathematical (dis-)ability: working memory and number sense, although only few studies have compared the relations between working memory and mathematics and between number sense and mathematics. In this study, both constructs were studied in relation to mathematics in general, and to mathematical learning disabilities (MLD) in particular. The sample consisted of 154 children aged between 6 and 10 years, including 26 children with MLD. Children performing low on either number sense or visual-spatial working memory scored lower on math tests than children without such a weakness. Children with a double weakness scored the lowest. These results confirm the important role of both visual-spatial working memory and number sense in mathematical development.


2017 ◽  
Vol 16 (2) ◽  
pp. 61-76 ◽  
Author(s):  
Anaïs Thibault Landry ◽  
Marylène Gagné ◽  
Jacques Forest ◽  
Sylvie Guerrero ◽  
Michel Séguin ◽  
...  

Abstract. To this day, researchers are debating the adequacy of using financial incentives to bolster performance in work settings. Our goal was to contribute to current understanding by considering the moderating role of distributive justice in the relation between financial incentives, motivation, and performance. Based on self-determination theory, we hypothesized that when bonuses are fairly distributed, using financial incentives makes employees feel more competent and autonomous, which in turn fosters greater autonomous motivation and lower controlled motivation, and better work performance. Results from path analyses in three samples supported our hypotheses, suggesting that the effect of financial incentives is contextual, and that compensation plans using financial incentives and bonuses can be effective when properly managed.


Sign in / Sign up

Export Citation Format

Share Document