Extreme wind climates – a world survey

Keyword(s):  
Author(s):  
Djordje Romanic

Tornadoes and downbursts cause extreme wind speeds that often present a threat to human safety, structures, and the environment. While the accuracy of weather forecasts has increased manifold over the past several decades, the current numerical weather prediction models are still not capable of explicitly resolving tornadoes and small-scale downbursts in their operational applications. This chapter describes some of the physical (e.g., tornadogenesis and downburst formation), mathematical (e.g., chaos theory), and computational (e.g., grid resolution) challenges that meteorologists currently face in tornado and downburst forecasting.


2021 ◽  
Author(s):  
Michael W. Thayne ◽  
Benjamin M. Kraemer ◽  
Jorrit P. Mesman ◽  
Bastiaan W. Ibelings ◽  
Rita Adrian

2021 ◽  
Vol 9 (3) ◽  
pp. 246
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Xiaoyong Li ◽  
Kaijun Ren ◽  
Hongze Leng

A wave state related sea surface roughness parameterization scheme that takes into account the impact of sea foam is proposed in this study. Using eight observational datasets, the performances of two most widely used wave state related parameterizations are examined under various wave conditions. Based on the different performances of two wave state related parameterizations under different wave state, and by introducing the effect of sea foam, a new sea surface roughness parameterization suitable for low to extreme wind conditions is proposed. The behaviors of drag coefficient predicted by the proposed parameterization match the field and laboratory measurements well. It is shown that the drag coefficient increases with the increasing wind speed under low and moderate wind speed conditions, and then decreases with increasing wind speed, due to the effect of sea foam under high wind speed conditions. The maximum values of the drag coefficient are reached when the 10 m wind speeds are in the range of 30–35 m/s.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 609
Author(s):  
María del Mar Rueda ◽  
Beatriz Cobo ◽  
Antonio Arcos

Randomized response (RR) techniques are widely used in research involving sensitive variables, such as drugs, violence or crime, especially when a population mean or prevalence must be estimated. However, they are not generally applied to examine relationships between a sensitive variable and other characteristics. This type of technique was initially applied to qualitative variables, and studies later showed that a logistic regression may be performed with RR data. Since many of the variables considered in this context are quantitative, RR techniques were extended to these cases to estimate the values required. Regression analysis is a valuable statistical tool for exploring relationships among variables and for establishing associations between responses and covariates. In this article, we propose a design-based regression analysis for complex sample designs based on the unified RR approach. We present estimators of the regression coefficients, study their theoretical properties and consider different ways to estimate their variance. The properties of these estimation techniques were simulated using various quantitative randomized models. The method proposed was also used to analyse the findings from a real-world survey.


Oceanologia ◽  
2020 ◽  
Vol 62 (1) ◽  
pp. 23-30
Author(s):  
Boris V. Divinsky ◽  
Vladimir V. Fomin ◽  
Ruben D. Kosyan ◽  
Yuri D. Ratner

2016 ◽  
Vol 31 (3) ◽  
pp. 985-1000 ◽  
Author(s):  
Nicholas J. Weber ◽  
Matthew A. Lazzara ◽  
Linda M. Keller ◽  
John J. Cassano

Abstract Numerous incidents of structural damage at the U.S. Antarctic Program’s (USAP) McMurdo Station due to extreme wind events (EWEs) have been reported over the past decade. Utilizing nearly 20 yr (~1992–2013) of University of Wisconsin automatic weather station (AWS) data from three different stations in the Ross Island region (Pegasus North, Pegasus South, and Willie Field), statistical analysis shows no significant trends in EWE frequency, intensity, or duration. EWEs more frequently occur during the transition seasons. To assess the dynamical environment of these EWEs, Antarctic Mesoscale Prediction System (AMPS) forecast back trajectories are computed and analyzed in conjunction with several other AMPS fields for the strongest events at McMurdo Station. The synoptic analysis reveals that McMurdo Station EWEs are nearly always associated with strong southerly flow due to an approaching Ross Sea cyclone and an upper-level trough around Cape Adare. A Ross Ice Shelf air stream (RAS) environment is created with enhanced barrier winds along the Transantarctic Mountains, downslope winds in the lee of the glaciers and local topography, and a tip jet effect around Ross Island. The position and intensity of these Ross Sea cyclones are most influenced by the occurrence of a central Pacific ENSO event, which causes the upper-level trough to move westward. An approaching surface cyclone would then be in position to trigger an event, depending on how the wind direction and speed impinges on the complex topography around McMurdo Station.


2001 ◽  
Vol 35 (4) ◽  
pp. 33-45 ◽  
Author(s):  
Peter Hogarth

Between 23rd and 25th July 2001 GeoSwath, a high specification shallow water wide swath bathymetry system, was used to survey the entire Portsmouth NH Harbor area. This paper deals with the results of this survey, illustrating the potential for significant reductions in the high costs, which have prevented widespread proliferation of Swath Bathymetry systems to date. Data, including a complete DTM gridded to 1 m resolution, will be presented and discussed in detail. These results show that the system is very easy to set up and use, requires greatly reduced boat and processing time, whilst offering high accuracy and very high coverage and resolution when used in a real-world survey of a dynamic harbor environment.


Sign in / Sign up

Export Citation Format

Share Document