Forecasting of Tornadoes and Downbursts

Author(s):  
Djordje Romanic

Tornadoes and downbursts cause extreme wind speeds that often present a threat to human safety, structures, and the environment. While the accuracy of weather forecasts has increased manifold over the past several decades, the current numerical weather prediction models are still not capable of explicitly resolving tornadoes and small-scale downbursts in their operational applications. This chapter describes some of the physical (e.g., tornadogenesis and downburst formation), mathematical (e.g., chaos theory), and computational (e.g., grid resolution) challenges that meteorologists currently face in tornado and downburst forecasting.

2009 ◽  
Vol 24 (2) ◽  
pp. 520-529 ◽  
Author(s):  
Bob Glahn ◽  
Kathryn Gilbert ◽  
Rebecca Cosgrove ◽  
David P. Ruth ◽  
Kari Sheets

Abstract Model output statistics (MOS) guidance forecasts have been produced at stations and provided to National Weather Service forecasters and private entities for over three decades. As the numerical weather prediction models became more accurate, MOS followed that trend. Up until a few years ago, the MOS produced at observation locations met the basic need for guidance. With the advent of the Interactive Forecast Preparation System and the National Digital Forecast Database, gridded MOS forecasts became needed as guidance for forecasters. One method of providing such grids is to objectively analyze the MOS forecasts for points. A basic successive correction method has been extended to analyze MOS forecasts and surface weather variables. This method is being applied to MOS forecasts to provide guidance for producing grids of sensible weather elements such as temperature, clouds, and snow amount. Guidance forecasts have been implemented for the conterminous United States for most weather elements contained in routine weather forecasts. This paper describes the method applied to daytime maximum temperature over the conterminous United States and gives example results.


2020 ◽  
Author(s):  
Olivier Bock ◽  
Pierre Bosser ◽  
Olivier Caumont ◽  
Raphael Legouge ◽  
Nicolas Laurain

<p>This work aims to provide a quick review of different experiments conducted in the past for the estimation of integrated water vapor content from shipborne GNSS receiver. This state of the art will be confronted with results obtained using GPS data acquired by the French Hydrographic Ship Borda on a cruise over Atlantic Ocean and Mediterranean Sea, from Brest to Toulon in August 2015; the estimated IWV are compared with satellite observations (MODIS) and outputs from numerical weather prediction models (ERAI, ERA5, Arpege, Arome); while differences between GPS and MODIS retrievals reach almost 4 kg/m2 in terms of RMS, agreement is generally much better with numerical models (2 up to 3 kg/m2 in terms of RMS). Use of real-time orbit and clocks product is also investigated in order to assess the performance of near real-time GPS-IWV estimation for NWP purposes. We will draw out the prospects in terms of possibilities and opportunities for the use of shipborne GNSS IWV for meteorology and climatology.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Harel. B. Muskatel ◽  
Ulrich Blahak ◽  
Pavel Khain ◽  
Yoav Levi ◽  
Qiang Fu

Parametrization of radiation transfer through clouds is an important factor in the ability of Numerical Weather Prediction models to correctly describe the weather evolution. Here we present a practical parameterization of both liquid droplets and ice optical properties in the longwave and shortwave radiation. An advanced spectral averaging method is used to calculate the extinction coefficient, single scattering albedo, forward scattered fraction and asymmetry factor (bext, v, f, g), taking into account the nonlinear effects of light attenuation in the spectral averaging. An ensemble of particle size distributions was used for the ice optical properties calculations, which enables the effective size range to be extended up to 570 μm and thus be applicable for larger hydrometeor categories such as snow, graupel, and rain. The new parameterization was applied both in the COSMO limited-area model and in ICON global model and was evaluated by using the COSMO model to simulate stratiform ice and water clouds. Numerical weather prediction models usually determine the asymmetry factor as a function of effective size. For the first time in an operational numerical weather prediction (NWP) model, the asymmetry factor is parametrized as a function of aspect ratio. The method is generalized and is available on-line to be readily applied to any optical properties dataset and spectral intervals of a wide range of radiation transfer models and applications.


2013 ◽  
Vol 6 (6) ◽  
pp. 1961-1975 ◽  
Author(s):  
K. Zink ◽  
A. Pauling ◽  
M. W. Rotach ◽  
H. Vogel ◽  
P. Kaufmann ◽  
...  

Abstract. Simulating pollen concentrations with numerical weather prediction (NWP) systems requires a parameterization for pollen emission. We have developed a parameterization that is adaptable for different plant species. Both biological and physical processes of pollen emission are taken into account by parameterizing emission as a two-step process: (1) the release of the pollen from the flowers, and (2) their entrainment into the atmosphere. Key factors influencing emission are temperature, relative humidity, the turbulent kinetic energy and precipitation. We have simulated the birch pollen season of 2012 using the NWP system COSMO-ART (Consortium for Small-scale Modelling – Aerosols and Reactive Trace Gases), both with a parameterization already present in the model and with our new parameterization EMPOL. The statistical results show that the performance of the model can be enhanced by using EMPOL.


2005 ◽  
Vol 32 (14-15) ◽  
pp. 1841-1863 ◽  
Author(s):  
Mark S. Roulston ◽  
Jerome Ellepola ◽  
Jost von Hardenberg ◽  
Leonard A. Smith

Sign in / Sign up

Export Citation Format

Share Document