The Mekong River Commission as a water diplomat

Author(s):  
Anoulak Kittikhoun ◽  
Denise Michèle Staubli
2014 ◽  
Vol 18 (7) ◽  
pp. 2645-2656 ◽  
Author(s):  
T. C. Pagano

Abstract. This study created a 13-year historical archive of operational flood forecasts issued by the Regional Flood Management and Mitigation Center (RFMMC) of the Mekong River Commission. The RFMMC issues 1- to 5-day daily deterministic river height forecasts for 22 locations throughout the wet season (June–October). When these forecasts reach near flood level, government agencies and the public are encouraged to take protective action against damages. When measured by standard skill scores, the forecasts perform exceptionally well (e.g., 1 day-ahead Nash–Sutcliffe > 0.99) although much of this apparent skill is due to the strong seasonal cycle and the narrow natural range of variability at certain locations. Five-day forecasts upstream of Phnom Penh typically have 0.8 m error standard deviation, whereas below Phnom Penh the error is typically 0.3 m. The coefficients of persistence for 1-day forecasts are typically 0.4–0.8 and 5-day forecasts are typically 0.1–0.7. RFMMC uses a series of benchmarks to define a metric of percentage satisfactory forecasts. As the benchmarks were derived based on the average error, certain locations and lead times consistently appear less satisfactory than others. Instead, different benchmarks were proposed and derived based on the 70th percentile of absolute error over the 13-year period. There are no obvious trends in the percentage of satisfactory forecasts from 2002 to 2012, regardless of the benchmark chosen. Finally, when evaluated from a categorical "crossing above/not-crossing above flood level" perspective, the forecasts have a moderate probability of detection (48% at 1 day ahead, 31% at 5 days ahead) and false alarm rate (13% at 1 day ahead, 74% at 5 days ahead).


Subject Laos's infrastructure and anti-corruption drives. Significance Prime Minister Thongloun Sisoulith is aiming to tackle rising public debt and corruption. The ruling Lao People’s Revolutionary Party (LPRP) last year suspended approval of new hydroelectric projects following the collapse of a dam in the Mekong river basin, but the country is committed to developing hydropower. Impacts The four-country Mekong River Commission will have limited influence over Lao hydropower policy. Anti-corruption efforts will not result in political challenges to the LPRP. The government will aim to persuade international organisations active in Laos of its new openness.


Water Policy ◽  
2009 ◽  
Vol 12 (6) ◽  
pp. 798-821 ◽  
Author(s):  
Bennett L. Bearden

In 1957, the four lower Mekong River states jointly organized the development of the basin and established a legal regime that has spanned five decades of cooperation. In 1995, Cambodia, Lao PDR, Thailand and Vietnam concluded the Agreement on the Cooperation for the Sustainable Development of the Mekong River Basin and formed the Mekong River Commission, which has been lauded as the most progressive of river institutions and a model for the world. At the core of the 1995 Mekong Agreement is the concept of sustainable development. Guided by this sustainable development paradigm, the Lower Mekong River Basin states attempt to balance the maintenance of water quantity with protection of water quality, and agree to cooperate and use the Mekong's water resources in a manner in which the river system's environmental conditions and ecological balance are conserved and maintained. However, development of the Mekong and its tributaries has rendered the efficacy of the Mekong legal regime to support holistic water resources management questionable. More than ten years of experience has shown that there are aspects of the 1995 Mekong Agreement that should be strengthened in order to secure the environmental, economic and social benefits that it promises.


Water Policy ◽  
2016 ◽  
Vol 18 (6) ◽  
pp. 1420-1435 ◽  
Author(s):  
Mak Sithirith ◽  
Jaap Evers ◽  
Joyeeta Gupta

Water security is a key governance challenge especially in relation to transboundary rivers. While the literature elaborates on the water security concept, there is very little on how to operationalize it in the transboundary context. Hence, this paper addresses the question: How can the governance of transboundary rivers be operationalized to deal with national water security concerns? It uses a literature review and a case study focusing on dams in the Mekong tributaries, namely the Sesan, part of the 3S Basin, in Vietnam and Cambodia. The paper describes the damming process in the 3S Basin and how it threatens water security for downstream states in terms of securing the flow, volume, quality, space, and the temporal variations of the rivers and the livelihoods of river dependent communities. It examines how the Mekong River Commission (MRC) members address these issues, balance their interests and secure the free flow of the Mekong River and its tributaries. It concludes that the MRC Agreement of 1995 is an inadequate mechanism to regulate the developments of hydrological infrastructure on the shared international tributaries, and that further operationalization of the concept of water security is necessary to enable the improvement of existing cooperative regulations and mechanisms.


2013 ◽  
Vol 10 (11) ◽  
pp. 14433-14461 ◽  
Author(s):  
T. C. Pagano

Abstract. This study created a 13 yr historical archive of operational flood forecasts issued by the Regional Flood Management and Mitigation Center (RFMMC) of the Mekong River Commission. The RFMMC issues 1 to 5 day-ahead daily deterministic river height forecasts for 22 locations throughout the wet season (June–October). When these forecasts reach near Flood Level, government agencies and the public are encouraged to take protective action against damages. When measured by standard skill scores, the forecasts perform exceptionally well (e.g. 1 day-ahead Nash–Sutcliffe > 0.99) although much of this apparent skill is due to the strong seasonal cycle and the narrow natural range of variability at certain locations. 5 day-ahead forecasts upstream of Phnom Penh typically have 0.8 m error standard deviation, whereas below Phnom Penh the error is typically 0.3 m. The Coefficients of Persistence for 1 day-ahead forecasts are typically 0.4–0.8 and 5 day-ahead forecasts are typically 0.1–0.7. RFMMC uses a series of benchmarks to define a metric of Percentage Satisfactory forecasts. As the benchmarks were derived based on the average error, certain locations and lead-times consistently appear less satisfactory than others. Instead, different benchmarks were proposed and derived based on the 70th percentile of absolute error over the 13 yr period. There are no obvious trends in the Percentage of Satisfactory forecasts from 2002–2012, regardless of the benchmark chosen. Finally, when evaluated from a categorical "crossing above/not-crossing above flood level" perspective, the forecasts have a moderate probability of detection (48% at 1 day-ahead, 31% at 5 day-ahead) and false alarm rate (13% at 1 day-ahead, 74% at 5 days-ahead).


Sign in / Sign up

Export Citation Format

Share Document