The Future World Disorder: The Structural Context of Crises

2020 ◽  
pp. 210-227
Author(s):  
Daniel Bell
2020 ◽  
Author(s):  
Lamine Hamai ◽  
Atmane Lamali ◽  
Abdelkrim Yelles-chaouche ◽  
Abdeslam Abtout ◽  
Abdelmadjid Nadjemi ◽  
...  

<p>Geophysics continues to play a critical role in the future discovery of terrestrial impact structures. While the signatures within these structures may not be unique, the application of geophysics can effectively characterize them, even when they are deeply eroded or completely buried underground. In the case of Maâdna crater (33°19' N, 4°19' E), among new performed geophysical surveys, a GPR technique has been especially used to explore a supposed ejecta layer. However, GPR survey results allowed the confirmation of nonexistence of such as melting materials at Maâdna crater. Nevertheless, our different scans were interpretative against the structural context of the Maâdna structure. Indeed, most of the analyzed profiles allowed us recognizing the typical deformation effects at this structure, which can also generally be encountered at any crater-like structured site. Consequently, in view to this new resulting GPR data, even we do not definitely reject an impact origin, we are still pleading for other caratering scenarios for this structure.</p>


2020 ◽  
pp. 50
Author(s):  
Konstantinos Papageorgiou

Sports biomechanics is one of the most fascinating and formalised disciplines in sports science. While it uses a host of methods, on closer look, it lacks a thorough epistemological / methodological foundation besides what it implicitly borrows from the sciences it uses, such as mathematics and physics. Here, I shall attempt to portray what such a basic epistemological understanding would include and also try to address issues directly related to such an approach. I shall start by describing the most general context in which sports biomechanics exist and then, I will attempt to provide a structural context to bridge the gap between sports biomechanics and practice. Concluding with some ideas about the future of biomechanics.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1978 ◽  
Vol 48 ◽  
pp. 387-388
Author(s):  
A. R. Klemola
Keyword(s):  

Second-epoch photographs have now been obtained for nearly 850 of the 1246 fields of the proper motion program with centers at declination -20° and northwards. For the sky at 0° and northward only 130 fields remain to be taken in the next year or two. The 270 southern fields with centers at -5° to -20° remain for the future.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
Nicholas J Severs

In his pioneering demonstration of the potential of freeze-etching in biological systems, Russell Steere assessed the future promise and limitations of the technique with remarkable foresight. Item 2 in his list of inherent difficulties as they then stood stated “The chemical nature of the objects seen in the replica cannot be determined”. This defined a major goal for practitioners of freeze-fracture which, for more than a decade, seemed unattainable. It was not until the introduction of the label-fracture-etch technique in the early 1970s that the mould was broken, and not until the following decade that the full scope of modern freeze-fracture cytochemistry took shape. The culmination of these developments in the 1990s now equips the researcher with a set of effective techniques for routine application in cell and membrane biology.Freeze-fracture cytochemical techniques are all designed to provide information on the chemical nature of structural components revealed by freeze-fracture, but differ in how this is achieved, in precisely what type of information is obtained, and in which types of specimen can be studied.


Sign in / Sign up

Export Citation Format

Share Document