Leveraging nature to envision (functional) space: An architecture of machinic abduction

2016 ◽  
pp. 221-236
Keyword(s):  
2014 ◽  
Vol 7 (3) ◽  
pp. 225-228 ◽  
Author(s):  
Parvind Gumber ◽  
Aditi Sarawgi ◽  
Samir Dutta ◽  
Puneet Goenka

2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


2020 ◽  
Vol 6 (2) ◽  
pp. 158-163
Author(s):  
B. B. Dhanuk ◽  
K. Pudasainee ◽  
H. P. Lamichhane ◽  
R. P. Adhikari

One of revealing and widely used concepts in Physics and mathematics is the Dirac delta function. The Dirac delta function is a distribution on real lines which is zero everywhere except at a single point, where it is infinite. Dirac delta function has vital role in solving inhomogeneous differential equations. In addition, the Dirac delta functions can be used to explore harmonic information’s imbedded in the physical signals, various forms of Dirac delta function and can be constructed from the closure relation of orthonormal basis functions of functional space. Among many special functions, we have chosen the set of eigen functions of the Hamiltonian operator of harmonic oscillator and angular momentum operators for orthonormal basis. The closure relation of orthonormal functions  used to construct the generator of Dirac delta function which is used to expand analytic functions log(x + 2),exp(-x2) and x within the valid region of arguments.


Author(s):  
Serge Nicaise ◽  
Ismail Merabet ◽  
Rayhana REZZAG BARA

This work deals with the finite element approximation of a prestressed shell model using a new formulation where the unknowns (the displacement and the rotation of fibers normal to the midsurface) are described in Cartesian and local covariant basis respectively. Due to the constraint involved in the definition of the functional space, a penalized version is then considered. We obtain a non robust a priori error estimate of this penalized formulation, but a robust one is obtained for its mixed formulation. Moreover, we present a reliable and efficient a posteriori error estimator of the penalized formulation. Numerical tests are included that confirmthe efficiency of our residual a posteriori estimator.


2019 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Tiziano Granucci

In this articles we will study the integration of the vectorial functions in Fréchet spaces. Particularly we will introduce and we will study a new functional space and we will prove some theorems of representation.


2018 ◽  
Vol 26 (1) ◽  
pp. 49-67
Author(s):  
Noboru Endou

Summary The goal of this article is to show Fubini’s theorem for non-negative or non-positive measurable functions [10], [2], [3], using the Mizar system [1], [9]. We formalized Fubini’s theorem in our previous article [5], but in that case we showed the Fubini’s theorem for measurable sets and it was not enough as the integral does not appear explicitly. On the other hand, the theorems obtained in this paper are more general and it can be easily extended to a general integrable function. Furthermore, it also can be easy to extend to functional space Lp [12]. It should be mentioned also that Hölzl and Heller [11] have introduced the Lebesgue integration theory in Isabelle/HOL and have proved Fubini’s theorem there.


2021 ◽  
Vol 19 (3) ◽  
Author(s):  
João D. Ferraz ◽  
Armando C. R. Casimiro ◽  
Diego A. Z. Garcia ◽  
Alan D. Pereira ◽  
Lucas R. Jarduli ◽  
...  

Abstract We evaluated the fish composition and ecological attributes of the ichthyofauna collected in a limnological zone of the Taquaruçu Reservoir, lower Paranapanema River. Information about the fish community was updated when compared to the previous study (2006). Non-metric multidimensional scaling (NMDS) showed differences in species composition between periods and community weighted means (CWMs) exhibited changes in functional composition over time. Four functional indices were used in the principal coordinate analysis (PcoA) to measure changes in the functional space of species, whereas functional β-diversity inspected differences in the traits composition between the periods. 1,203 individuals were sampled of 43 species, being 16 non-native and 14 new records. Compared to 2006, 27 species were absent, most of them native to Loricariidae and Anostomidae, while Curimatidae and Pimelodidae decreased in abundance. Functional indexes showed a reduction in functional diversity, whereas new species records exhibited functional redundancy. It might have occurred a simplification of the fish community over time, excluding the migratory and specialists species such as the herbivores and detritivores. Accordingly, we concluded that the ichthyofauna of the Taquaruçu Reservoir might have been undergoing a process towards biotic homogenization.


2014 ◽  
Author(s):  
Shahin Mohammadi ◽  
Baharak Saberidokht ◽  
Shankar Subramaniam ◽  
Ananth Grama

Budding yeast, S. cerevisiae, has been used extensively as a model organism for studying cellular processes in evolutionarily distant species, including humans. However, different human tissues, while inheriting a similar genetic code, exhibit distinct anatomical and physiological properties. Specific biochemical processes and associated biomolecules that differentiate various tissues are not completely understood, neither is the extent to which a unicellular organism, such as yeast, can be used to model these processes within each tissue. We propose a novel computational and statistical framework to systematically quantify the suitability of yeast as a model organism for different human tissues. We develop a computational method for dissecting the human interactome into tissue-specific cellular networks. Using these networks, we simultaneously partition the functional space of human genes, and their corresponding pathways, based on their conservation both across species and among different tissues. We study these sub-spaces in detail, and relate them to the overall similarity of each tissue with yeast. Many complex disorders are driven by a coupling of housekeeping (universally expressed in all tissues) and tissue-selective (expressed only in specific tissues) dysregulated pathways. We show that human-specific subsets of tissue-selective genes are significantly associated with the onset and development of a number of pathologies. Consequently, they provide excellent candidates as drug targets for therapeutic interventions. We also present a novel tool that can be used to assess the suitability of the yeast model for studying tissue-specific physiology and pathophysiology in humans.


Sign in / Sign up

Export Citation Format

Share Document