scholarly journals On the scope and limitations of baker's yeast as a model organism for studying human tissue-specific pathways

2014 ◽  
Author(s):  
Shahin Mohammadi ◽  
Baharak Saberidokht ◽  
Shankar Subramaniam ◽  
Ananth Grama

Budding yeast, S. cerevisiae, has been used extensively as a model organism for studying cellular processes in evolutionarily distant species, including humans. However, different human tissues, while inheriting a similar genetic code, exhibit distinct anatomical and physiological properties. Specific biochemical processes and associated biomolecules that differentiate various tissues are not completely understood, neither is the extent to which a unicellular organism, such as yeast, can be used to model these processes within each tissue. We propose a novel computational and statistical framework to systematically quantify the suitability of yeast as a model organism for different human tissues. We develop a computational method for dissecting the human interactome into tissue-specific cellular networks. Using these networks, we simultaneously partition the functional space of human genes, and their corresponding pathways, based on their conservation both across species and among different tissues. We study these sub-spaces in detail, and relate them to the overall similarity of each tissue with yeast. Many complex disorders are driven by a coupling of housekeeping (universally expressed in all tissues) and tissue-selective (expressed only in specific tissues) dysregulated pathways. We show that human-specific subsets of tissue-selective genes are significantly associated with the onset and development of a number of pathologies. Consequently, they provide excellent candidates as drug targets for therapeutic interventions. We also present a novel tool that can be used to assess the suitability of the yeast model for studying tissue-specific physiology and pathophysiology in humans.

Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 449 ◽  
Author(s):  
JiaRui Li ◽  
Lei Chen ◽  
Yu-Hang Zhang ◽  
XiangYin Kong ◽  
Tao Huang ◽  
...  

Tissue-specific gene expression has long been recognized as a crucial key for understanding tissue development and function. Efforts have been made in the past decade to identify tissue-specific expression profiles, such as the Human Proteome Atlas and FANTOM5. However, these studies mainly focused on “qualitatively tissue-specific expressed genes” which are highly enriched in one or a group of tissues but paid less attention to “quantitatively tissue-specific expressed genes”, which are expressed in all or most tissues but with differential expression levels. In this study, we applied machine learning algorithms to build a computational method for identifying “quantitatively tissue-specific expressed genes” capable of distinguishing 25 human tissues from their expression patterns. Our results uncovered the expression of 432 genes as optimal features for tissue classification, which were obtained with a Matthews Correlation Coefficient (MCC) of more than 0.99 yielded by a support vector machine (SVM). This constructed model was superior to the SVM model using tissue enriched genes and yielded MCC of 0.985 on an independent test dataset, indicating its good generalization ability. These 432 genes were proven to be widely expressed in multiple tissues and a literature review of the top 23 genes found that most of them support their discriminating powers. As a complement to previous studies, our discovery of these quantitatively tissue-specific genes provides insights into the detailed understanding of tissue development and function.


GeroScience ◽  
2021 ◽  
Author(s):  
Caitlin S. Latimer ◽  
Nicole F. Liachko

AbstractAlzheimer’s disease (AD) is traditionally defined by the presence of two types of protein aggregates in the brain: amyloid plaques comprised of the protein amyloid-β (Aβ) and neurofibrillary tangles containing the protein tau. However, a large proportion (up to 57%) of AD patients also have TDP-43 aggregates present as an additional comorbid pathology. The presence of TDP-43 aggregates in AD correlates with hippocampal sclerosis, worse brain atrophy, more severe cognitive impairment, and more rapid cognitive decline. In patients with mixed Aβ, tau, and TDP-43 pathology, TDP-43 may interact with neurodegenerative processes in AD, worsening outcomes. While considerable progress has been made to characterize TDP-43 pathology in AD and late-onset dementia, there remains a critical need for mechanistic studies to understand underlying disease biology and develop therapeutic interventions. This perspectives article reviews the current understanding of these processes from autopsy cohort studies and model organism-based research, and proposes targeting neurotoxic synergies between tau and TDP-43 as a new therapeutic strategy for AD with comorbid TDP-43 pathology.


Author(s):  
Zachary F Gerring ◽  
Angela Mina-Vargas ◽  
Eric R Gamazon ◽  
Eske M Derks

Abstract Motivation Genome-wide association studies have successfully identified multiple independent genetic loci that harbour variants associated with human traits and diseases, but the exact causal genes are largely unknown. Common genetic risk variants are enriched in non-protein-coding regions of the genome and often affect gene expression (expression quantitative trait loci, eQTL) in a tissue-specific manner. To address this challenge, we developed a methodological framework, E-MAGMA, which converts genome-wide association summary statistics into gene-level statistics by assigning risk variants to their putative genes based on tissue-specific eQTL information. Results We compared E-MAGMA to three eQTL informed gene-based approaches using simulated phenotype data. Phenotypes were simulated based on eQTL reference data using GCTA for all genes with at least one eQTL at chromosome 1. We performed 10 simulations per gene. The eQTL-h2 (i.e., the proportion of variation explained by the eQTLs) was set at 1%, 2%, and 5%. We found E-MAGMA outperforms other gene-based approaches across a range of simulated parameters (e.g. the number of identified causal genes). When applied to genome-wide association summary statistics for five neuropsychiatric disorders, E-MAGMA identified more putative candidate causal genes compared to other eQTL-based approaches. By integrating tissue-specific eQTL information, these results show E-MAGMA will help to identify novel candidate causal genes from genome-wide association summary statistics and thereby improve the understanding of the biological basis of complex disorders. Availability A tutorial and input files are made available in a github repository: https://github.com/eskederks/eMAGMA-tutorial. Supplementary information Supplementary data are available at Bioinformatics online.


Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1252-1266 ◽  
Author(s):  
Hassan B. Hartman ◽  
David A. Fell ◽  
Sergio Rossell ◽  
Peter Ruhdal Jensen ◽  
Martin J. Woodward ◽  
...  

Salmonella enterica sv. Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of S. Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in the energy demand while growing in glucose minimal medium. By grouping reactions with similar flux responses, a subnetwork of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions that when removed from the genome-scale model interfered with energy and biomass generation. Eleven such sets were found to be essential for the production of biomass precursors. Experimental investigation of seven of these showed that knockouts of the associated genes resulted in attenuated growth for four pairs of reactions, whilst three single reactions were shown to be essential for growth.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0253250
Author(s):  
Daniel Rud ◽  
Paul Marjoram ◽  
Kimberly Siegmund ◽  
Darryl Shibata

Recent DepMap CRISPR-Cas9 single gene disruptions have identified genes more essential to proliferation in tissue culture. It would be valuable to translate these finding with measurements more practical for human tissues. Here we show that DepMap essential genes and other literature curated functional genes exhibit cell-specific preferential epigenetic conservation when DNA methylation measurements are compared between replicate cell lines and between intestinal crypts from the same individual. Culture experiments indicate that epigenetic drift accumulates through time with smaller differences in more functional genes. In NCI-60 cell lines, greater targeted gene conservation correlated with greater drug sensitivity. These studies indicate that two measurements separated in time allow normal or neoplastic cells to signal through conservation which human genes are more essential to their survival in vitro or in vivo.


2019 ◽  
Vol 12 (S7) ◽  
Author(s):  
Pakeeza Akram ◽  
Li Liao

Abstract Background Comorbidity is the phenomenon of two or more diseases occurring simultaneously not by random chance and presents great challenges to accurate diagnosis and treatment. As an effort toward better understanding the genetic causes of comorbidity, in this work, we have developed a computational method to predict comorbid diseases. Two diseases sharing common genes tend to increase their comorbidity. Previous work shows that after mapping the associated genes onto the human interactome the distance between the two disease modules (subgraphs) is correlated with comorbidity. Methods To fully incorporate structural characteristics of interactome as features into prediction of comorbidity, our method embeds the human interactome into a high dimensional geometric space with weights assigned to the network edges and uses the projection onto different dimension to “fingerprint” disease modules. A supervised machine learning classifier is then trained to discriminate comorbid diseases versus non-comorbid diseases. Results In cross-validation using a benchmark dataset of more than 10,000 disease pairs, we report that our model achieves remarkable performance of ROC score = 0.90 for comorbidity threshold at relative risk RR = 0 and 0.76 for comorbidity threshold at RR = 1, and significantly outperforms the previous method and the interactome generated by annotated data. To further incorporate prior knowledge pathways association with diseases, we weight the protein-protein interaction network edges according to their frequency of occurring in those pathways in such a way that edges with higher frequency will more likely be selected in the minimum spanning tree for geometric embedding. Such weighted embedding is shown to lead to further improvement of comorbid disease prediction. Conclusion The work demonstrates that embedding the two-dimension planar graph of human interactome into a high dimensional geometric space allows for characterizing and capturing disease modules (subgraphs formed by the disease associated genes) from multiple perspectives, and hence provides enriched features for a supervised classifier to discriminate comorbid disease pairs from non-comorbid disease pairs more accurately than based on simply the module separation.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Shahin Mohammadi ◽  
Baharak Saberidokht ◽  
Shankar Subramaniam ◽  
Ananth Grama

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A30.2-A31
Author(s):  
M Andreatta ◽  
SJ Carmona

BackgroundSingle-cell transcriptomics is a transformative technology to explore heterogeneous cell populations such as T cells, one of our most potent weapons against cancer and viral infections. Recent advances in this technology and the computational tools developed in their wake provide unique opportunities to build reference cell atlases that can be used to interpret new single-cell RNA-sequencing (scRNA-seq) data and systematically compare data sets derived from different models or therapeutic conditions.Materials and MethodsWe have developed ProjecTILs (https://github.com/carmonalab/ProjecTILs), a novel computational method to project new data sets into a reference map of T cells, enabling their direct comparison in a stable, annotated system of coordinates. ProjecTILs enables the classification of query cells into curated, discrete states, but also over a continuous space of intermediate states. We illustrate the projection of several data sets from recent publications over two cross-study murine T cell reference atlases: the first describing tumor-infiltrating T lymphocytes (TILs), the second characterizing acute and chronic viral infection.ResultsProjecTILs accurately predicted the effects of multiple perturbations, including the ablation of genes controlling T cell differentiation, such as Tox, Ptpn2, miR-155 and Regnase-1, and identified novel gene programs that were altered in these cells (such as a Lag3-Klrc1 inhibitory module), revealing mechanisms of action behind these immunotherapeutic targets and opening new opportunities for the identification of novel targets. By comparing multiple samples over the same reference map, and across alternative embeddings, our method allows exploring the effect of cellular perturbations (e.g. as the result of therapy or genetic engineering) in terms of transcriptional states and altered genetic programs.ConclusionsThe proposed computational method will likely contribute to reveal the mechanisms of action of experimental immunotherapies and guide novel therapeutic interventions in cancer and beyond.Disclosure InformationM. Andreatta: None. S.J. Carmona: None.


Sign in / Sign up

Export Citation Format

Share Document