Nutrient Balance Assessment in the Mekong Basin: Nitrogen and Phosphorus Dynamics in a Catchment Scale

2005 ◽  
Vol 50 (5) ◽  
pp. 882-890 ◽  
Author(s):  
MARK H. OLSON ◽  
MELISSA M. HAGE ◽  
MARK D. BINKLEY ◽  
JAMES R. BINDER

2021 ◽  
Vol 13 (2) ◽  
pp. 515-527
Author(s):  
Zihao Bian ◽  
Hanqin Tian ◽  
Qichun Yang ◽  
Rongting Xu ◽  
Shufen Pan ◽  
...  

Abstract. Livestock manure nitrogen (N) and phosphorus (P) play an important role in biogeochemical cycling. Accurate estimation of manure nutrient is important for assessing regional nutrient balance, greenhouse gas emission, and water environmental risk. Currently, spatially explicit manure nutrient datasets over a century-long period are scarce in the United States (US). Here, we developed four datasets of annual animal manure N and P production and application in the contiguous US at a 30 arcsec resolution over the period of 1860–2017. The dataset combined multiple data sources including county-level inventory data as well as high-resolution livestock and crop maps. The total production of manure N and P increased from 1.4 Tg N yr−1 and 0.3 Tg P yr−1 in 1860 to 7.4 Tg N yr−1 and 2.3 Tg P yr−1 in 2017, respectively. The increasing manure nutrient production was associated with increased livestock numbers before the 1980s and enhanced livestock weights after the 1980s. The manure application amount was primarily dominated by production, and its spatial pattern was impacted by the nutrient demand of crops. The intense-application region mainly enlarged from the Midwest toward the southern US and became more concentrated in numerous hot spots after the 1980s. The South Atlantic–Gulf and Mid-Atlantic basins were exposed to high environmental risks due to the enrichment of manure nutrient production and application from the 1970s to the period of 2000–2017. Our long-term manure N and P datasets provide detailed information for national and regional assessments of nutrient budgets. Additionally, the datasets can serve as the input data for ecosystem and hydrological models to examine biogeochemical cycles in terrestrial and aquatic ecosystems. Datasets are available at https://doi.org/10.1594/PANGAEA.919937 (Bian et al., 2020).


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2924
Author(s):  
Linyan Pan ◽  
Junfeng Dai ◽  
Zhiqiang Wu ◽  
Zupeng Wan ◽  
Zhenyu Zhang ◽  
...  

Spatio-temporal dynamics of riverine nitrogen (N) and phosphorus (P) in karst regions are closely linked to hydrological conditions, human activities and karst features in upstream catchments. From October 2017 to September 2019, we undertook 22 sampling campaigns in 11 nested catchments ranging from 21.00 to 373.37 km2 in Huixian karst wetland to quantify forms, concentrations, and fluxes of riverine total nitrogen (TN) and total phosphorus (TP), and to identify spatial and temporal variations of nutrients transfer from upstream to downstream, tributaries (Mudong River and Huixian River) to the main stem (Xiangsi River) in the dry and wet seasons. Considering the hydrological conditions, human activities and karst features within upstream catchments, the following three spatial and temporal variations of riverine nutrients were found over the monitoring period: (1) the dynamics of riverine nitrogen and phosphorus varied seasonally with hydrological conditions; (2) the spatial disparities of riverine nitrogen and phosphorus were induced by different human activities within catchment scales; (3) the dynamics of riverine nitrogen and phosphorus varied similarly at spatial scale restricted by karst features. The findings from this study may improve our understanding of the influence of hydrological conditions, human activities and karst features on nitrogen and phosphorus variations in river waters at different spatial and temporal scales in the Huixian karst wetland basin, and will help managers to protect and restore river water environments in karst basin from a catchment-scale perspective.


2005 ◽  
Vol 51 (11) ◽  
pp. 183-191 ◽  
Author(s):  
C. Schilling ◽  
H. Behrendt ◽  
A. Blaschke ◽  
S. Danielescu ◽  
G. Dimova ◽  
...  

In the framework of the project daNUbs (Nutrient Management in the Danube Basin and its Impact on the Black Sea) the MONERIS emission model is used for the basin wide calculation of nutrient (nitrogen and phosphorus) emissions in the Danube Basin. The MONERIS model was developed and successfully applied for German river catchments. Based on investigations in selected test regions (case studies) the daNUbs approach is to check the applicability of the MONERIS emission model for the specific conditions of the Danube Basin in more detail than is possible with a basin wide application. Six case studies with areas of 400–3,500 km2 and several subcatchments have been selected in order to represent different conditions along the Danube Basin. In this study region intensive data collection and enhanced monitoring has been performed in order to raise the database significantly above the generally available data. Water balance as well as nutrient balance calculations have been performed with the MONERIS model as well as with other approaches. Results are compared to each other and to data from monitoring. Results up till now showed the applicability and sensitivity of the MONERIS approach in different conditions of the Danube Basin (e.g. emissions via groundwater). They indicated that the nitrogen retention in the catchments is well described with the MONERIS model.


Hydrobiologia ◽  
1993 ◽  
Vol 251 (1-3) ◽  
pp. 143-148 ◽  
Author(s):  
Sergiu Cristofor ◽  
Angheluta Vadineanu ◽  
Gheorghe Ignat

1999 ◽  
Vol 29 (8) ◽  
pp. 1237-1247 ◽  
Author(s):  
D Gillon ◽  
C Houssard ◽  
J C Valette ◽  
E Rigolot

Two prescribed burnings (downhill and uphill fires) were conducted in two stands of Aleppo pine (Pinus halepensis Mill.): a natural stand and a managed stand that was subject to thinning, pruning, and shrub removal. The concentrations of nitrogen (N) and phosphorus (P) in the pine needles and regrowth of the main shrub species, Quercus coccifera L., and the quantities of N and P in the needle fall and in the forest floor were measured during the 6 months following the fires. The concentrations of N and P in the pine needles and leaves of Q. coccifera increased compared with the unburned control after both fires in the natural stand, where there was only a slight reduction in fuel during prescribed burnings and where there was an abundant fall of scorched needles. In contrast, the chemical composition of the foliage was unchanged after the fires in the managed stand, where there was a greater reduction in fuel, and where only small quantities of scorched needles fell. This study showed that first opening prescribed burnings (natural stand) were less severe in terms of nutrient balance than maintenance prescribed burnings (managed stand) and that the forest floor reduction was a good indicator of fire severity.


2014 ◽  
Vol 383 (1-2) ◽  
pp. 387-399 ◽  
Author(s):  
Maja K. Sundqvist ◽  
David A. Wardle ◽  
Andrea Vincent ◽  
Reiner Giesler

Sign in / Sign up

Export Citation Format

Share Document