scholarly journals Changes of Methionine Residues of Proteins Reacted with Peroxides

1982 ◽  
Vol 35 (1) ◽  
pp. 69-72
Author(s):  
Kunihiko KOBAYASHI ◽  
Takako NAKAHARA ◽  
Eiji MISUMI ◽  
Naotoshi MATSUDOMI
Keyword(s):  
1981 ◽  
Vol 46 (3) ◽  
pp. 655-666
Author(s):  
Ladislav Morávek ◽  
Vladimír Kostka

On the basis of the knowlidge of thermolytic, chymotryptic and substilisin peptides the amino acid sequence was determined of cyanogen bromide fragment CB3 representing the region between methionine residues I and II of pepsin: Thr-Gly-Ile-Leu-Gly-Tyr-Asp-Thr-Val-Gln-Val-Gly-Gly-Ile-Ser-Asp-Thr-Asn-Gln-Ile-Phe-Gly-Leu-Ser-Glu-Thr-Glu-Pro-Gly-Ser-Phe-Leu-Tyr-Tyr-Ala-Pro-Phe-Asp-Gly-Ile-Leu-Gly-Leu-Ala-Tyr-Pro-Ser-Ile-Ser-Ala-Ser-Gly-Ala-Thr-Pro-Val-Phe-Asp-Asn-Leu-Trp-Asp-Gln-Gly-Leu-Val-Ser-Gln-Asp-Leu-Phe-Ser-Val-Tyr-Leu-Ser-Ser-Asn-Asp-Asp-Ser-Gly-Ser-Val-Val-Leu-Leu-Gly-Gly-Ile-Asp-Ser-Ser-Tyr-Tyr-Thr-Gly-Ser-Leu-Asn-Trp-Val-Pro-Val-Ser-Val-Glu-Gly-Tyr-Trp-Gln-Ile-Thr-Leu-Asp-Ser-Ile-Thr-Met.


2021 ◽  
Vol 22 (5) ◽  
pp. 2591
Author(s):  
Pengfei Ma ◽  
Jie Li ◽  
Lei Qi ◽  
Xiuzhu Dong

Small heat shock proteins (sHsps) are widely distributed among various types of organisms and function in preventing the irreversible aggregation of thermal denaturing proteins. Here, we report that Hsp17.6 from Methanolobus psychrophilus exhibited protection of proteins from oxidation inactivation. The overexpression of Hsp17.6 in Escherichia coli markedly increased the stationary phase cell density and survivability in HClO and H2O2. Treatments with 0.2 mM HClO or 10 mM H2O2 reduced malate dehydrogenase (MDH) activity to 57% and 77%, whereas the addition of Hsp17.6 recovered the activity to 70–90% and 86–100%, respectively. A similar effect for superoxide dismutase oxidation was determined for Hsp17.6. Non-reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis assays determined that the Hsp17.6 addition decreased H2O2-caused disulfide-linking protein contents and HClO-induced degradation of MDH; meanwhile, Hsp17.6 protein appeared to be oxidized with increased molecular weights. Mass spectrometry identified oxygen atoms introduced into the larger Hsp17.6 molecules, mainly at the aspartate and methionine residues. Substitution of some aspartate residues reduced Hsp17.6 in alleviating H2O2- and HClO-caused MDH inactivation and in enhancing the E. coli survivability in H2O2 and HClO, suggesting that the archaeal Hsp17.6 oxidation protection might depend on an “oxidant sink” effect, i.e., to consume the oxidants in environments via aspartate oxidation


1964 ◽  
Vol 239 (11) ◽  
pp. 3755-3761
Author(s):  
George R. Stark ◽  
William H. Stein
Keyword(s):  

Biologia ◽  
2007 ◽  
Vol 62 (4) ◽  
Author(s):  
Reda Sammour

AbstractThe main goal of this work was to make the cDNA-encoding subunit G2 of soybean glycinin, capable of self-assembly in vitro and rich in methionine residues. Two mutants (pSP65/G4SacG2 and pSP65/G4SacG2HG4) were therefore constructed. The constructed mutants were successfully assembled in vitro into oligomers similar to those occurred in the seed. The successful self-assembly was due to the introduction of Sac fragment of Gy4 (the codons of the first 21 amino acid residues), which reported to be the key element in self-assembly into trimers. The mutant pSP65/G4SacG2HG4 included the acidic chain of Gy4 (HG4), which was previously molecularly modified to have three methionine residues. This mutant will be useful in the efforts to improve the seed quality.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
You-Chul Jung ◽  
Mi-Ae Lee ◽  
Han-Shin Kim ◽  
Kyu-Ho Lee

AbstractBiofilm formation of Vibrio vulnificus is initiated by adherence of flagellated cells to surfaces, and then flagellum-driven motility is not necessary during biofilm maturation. Once matured biofilms are constructed, cells become flagellated and swim to disperse from biofilms. As a consequence, timely regulations of the flagellar components’ expression are crucial to complete a biofilm life-cycle. In this study, we demonstrated that flagellins’ production is regulated in a biofilm stage-specific manner, via activities of a protease DegQ and a chaperone FlaJ. Among four flagellin subunits for V. vulnificus filament, FlaC had the highest affinities to hook-associated proteins, and is critical for maturating flagellum, showed the least susceptibility to DegQ due to the presence of methionine residues in its DegQ-sensitive domains, ND1 and CD0. Therefore, differential regulation by DegQ and FlaJ controls the cytoplasmic stability of flagellins, which further determines the motility-dependent, stage-specific development of biofilms.


1989 ◽  
Vol 257 (2) ◽  
pp. 461-469 ◽  
Author(s):  
G E Morris

Chemical cleavage at cysteine residues with nitrothiocyanobenzoic acid shows that the last 98 amino acids of the 380-amino-acid sequence of chick muscle creatine kinase are sufficient for binding of the monoclonal antibody CK-ART. Removal of the last 30 amino acids by cleavage at methionine residues with CNBr results in loss of CK-ART binding. CK-ART binding is also lost when these C-terminal methionine residues are oxidized to sulphoxide, but binding is regained on reduction. Proteinase K ‘nicks’ native CK at a single site near the C-terminus and two fragments of 327 amino acides and 53 amino acids can be separated by subsequent SDS or urea treatment. CK-ART still binds normally to ‘nicked’ CK, which is enzymically inactive. After treatment with either urea (in a competition enzyme-linked immunosorbent assay) or SDS (on Western blots), however, CK-ART binds to neither of the two fragments, although these treatments do not affect binding to intact CK. This suggests that parts of both CK fragments contribute to the CK-ART epitope. CK-ART is both species- and isoenzyme-specific, binding only to chick M-CK. The only C-terminal regions containing chick-specific sequences are residues 300-312 and residues 368-371, the latter group being close to the essential methionine residues. We suggest that one, or possibly both, of these regions is involved in forming the conformational epitope on the surface of the CK molecule which CK-ART recognizes. Native CK is resistant to trypsin digestion. The C-terminal half of urea-treated and partly-refolded CK is also resistant to trypsin digestion, whereas the N-terminal half is readily digested. The results suggest a C-terminal region which can refold more rapidly than the rest of the CK molecule and provide evidence for an intermediate in CK refolding.


1976 ◽  
Vol 155 (2) ◽  
pp. 345-351 ◽  
Author(s):  
J G. Beeley

Cleavage of the two methionine residues in the glycoprotein trypsin inhibitor ovomucoid, variant O1, with CNBr resulted in two fragments whose mol.wts. were approx. 16 600 (fragment LS) and 11 000 (fragment M). Both fragments formed precipitates with antisera to ovomucoid. Fragment LS retained 56% of the trypsin-inhibitory activity of ovomucoid, but fragment M did not inhibit. After reduction and alkylation, the molecular weight of fragment M was unchanged, but fragment LS could be resolved into two segments of peptide chain with mol.wts. of approx. 12000 (fragment L) and 4700 (fragment S). Each of these peptides contained carbohydrate. Marked heterogeneity was observed in the hexose and hexosamine contents of fragment L. This may account for much of the heterogeneity in neutral carbohydrate occurring in ovomucoid preparations. It was found that fragment M was located at the N-terminal end, fragment S was in the centre and fragment L made up the C-terminal portion of the molecule.


2000 ◽  
Vol 275 (26) ◽  
pp. 19536-19544 ◽  
Author(s):  
Ute Panzenböck ◽  
Leonard Kritharides ◽  
Mark Raftery ◽  
Kerry-Anne Rye ◽  
Roland Stocker

Sign in / Sign up

Export Citation Format

Share Document