scholarly journals Effects of Air Void at the Steel-Concrete Interface on the Corrosion Initiation of Reinforcing Steel in Concrete under Chloride Exposure

2005 ◽  
Vol 17 (5) ◽  
pp. 829-834 ◽  
Author(s):  
Jin-Gak Nam ◽  
William H. Hartt ◽  
Kijoon Kim
2013 ◽  
Vol 837 ◽  
pp. 265-270 ◽  
Author(s):  
Vasile Constantinescu ◽  
Gheorghe Veniamin Bogus ◽  
Rares George Taran ◽  
Ioan Carcea

Concrete is a complex material of construction that enables the high compressive strength of natural stone to be sed in any configuration. In tension, however, concrete can be no stronger than the bond between the cured cement and the surfaces of the aggregate. This is generally much lower than the compressive strength of the concrete. Concrete is therefore frequently reinforced, usually with steel. When a system of steel bars or a steel mesh is incorporated in the concrete structure in such a way that the steel can support most of the tensile stresses and leave the immediately surrounding concrete comparatively free of tensile stress, then the complex is known as reinforced concrete. Corrosion of reinforcing steel in concrete leads to the premature failure of many structures exposed to harsh environments. Rust products form on the bar, expanding its volume and creating stress in the surrounding concrete. This leads to cracking and spalling, both of which can severely reduce the service life and strength of a member. Corrosion of reinforcing steel in concrete structures is one of the most expensive problems facing civil engineers in the world. The structural integrity of many bridges, overpasses, parking garages, and other concrete structures has been impaired by corrosion, and repairs are urgently required to ensure public safety. Corrosion-induced deterioration of reinforced concrete can be modelled in terms of three component steps: (1) time for corrosion initiation; (2) time, subsequent to corrosion initiation, for appearance of a crack on the external concrete surface (crack propagation); and (3) time for surface cracks to progress into further damage and develop into spalls, to the point where the functional service life, is reached. The two most common causes of reinforcement corrosion are: (i) localized breakdown of the passive film on the steel by chloride ions and (ii) general breakdown of passivity by neutralization of the concrete, predominantly by reaction with atmospheric carbon dioxide. Sound concrete is an ideal environment for steel but the increased use of deicing salts and the increased concentration of carbon dioxide in modern environments principally due to industrial pollution, has resulted in corrosion of the rebar becoming the primary cause of failure of this material. The scale of this problem has reached alarming proportions in various parts of the world. Corrosion in reinforced concrete structures is causing deterioration of our infrastructure. Structures in or near marine environments and transportation structures on which deicing salts are used are especially vulnerable. A widely promoted method for repairing damaged structures or for protecting structures in corrosive environments is the application of fiber-reinforced composite wraps over the surface of the structures elements.


2021 ◽  
Author(s):  
Alaka Ghosh

Corrosion of reinforcing steel causes cracking and spalling of concrete structures, reduces the effective cross-sectional area of the reinforcing steel and the concrete simultaneously decreases the bond strength at the steel-concrete interface. The detrimental effect of corrosion on the service life of reinforced concrete structures highlights the need for modeling of bond strength between the corroded steel and the concrete. This research presents a nonlinear finite element model for the bond stress at the steel-concrete interface for both uncorroded and corroded reinforcing steel. The nonlinear finite element program ABAQUS is used for this purpose. The expanded volume of corroded product of reinforcing steel produces radial and hoop stresses which cause longitudinal cracks in the concrete. The increased longitudinal crack width, the loss of effective cross-sectional area of the steel and the concrete is also reduced due to the lubricating effect of flaky corroded layer. This research models the loss of contact pressure and the decrease of friction coefficient with the mass loss of the reinforcing steel. The model analyzes the pullout tests of Amleh (2002) and a good agreement is noted between the analytical and the experimental results. Both in FE analysis and experimental results, the loss of bond capacity is almost linear with mass loss of rebar. FE analysis and experiemental result show that, up to 5% mass loss, the bond capacity loss is moderate, at 10 to 15% mass loss, significant amount of bond capacity is lost and at about 20% mass almost all bond capacity is lost. The model is also validated by analyzing the pullout tests performed by Cabrera and Ghoddoussis (1992) and those by Al-Sulaimani et al.(1990).


2021 ◽  
Author(s):  
Alaka Ghosh

Corrosion of reinforcing steel causes cracking and spalling of concrete structures, reduces the effective cross-sectional area of the reinforcing steel and the concrete simultaneously decreases the bond strength at the steel-concrete interface. The detrimental effect of corrosion on the service life of reinforced concrete structures highlights the need for modeling of bond strength between the corroded steel and the concrete. This research presents a nonlinear finite element model for the bond stress at the steel-concrete interface for both uncorroded and corroded reinforcing steel. The nonlinear finite element program ABAQUS is used for this purpose. The expanded volume of corroded product of reinforcing steel produces radial and hoop stresses which cause longitudinal cracks in the concrete. The increased longitudinal crack width, the loss of effective cross-sectional area of the steel and the concrete is also reduced due to the lubricating effect of flaky corroded layer. This research models the loss of contact pressure and the decrease of friction coefficient with the mass loss of the reinforcing steel. The model analyzes the pullout tests of Amleh (2002) and a good agreement is noted between the analytical and the experimental results. Both in FE analysis and experimental results, the loss of bond capacity is almost linear with mass loss of rebar. FE analysis and experiemental result show that, up to 5% mass loss, the bond capacity loss is moderate, at 10 to 15% mass loss, significant amount of bond capacity is lost and at about 20% mass almost all bond capacity is lost. The model is also validated by analyzing the pullout tests performed by Cabrera and Ghoddoussis (1992) and those by Al-Sulaimani et al.(1990).


2013 ◽  
Vol 631-632 ◽  
pp. 776-781
Author(s):  
Rui Jin Zhang ◽  
Hui Lin Yang ◽  
Da Yong Ye

This paper deals with the influence of the steel-concrete interface quality on the steel bar corrosion. Electrochemical methods including linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) were comparatively used to monitor the corrosion process of reinforcing steel in cement mortar. Experimental results show that a good quality of steel-concrete interface can significantly delay the corrosion initiation and reduces the corrosion rate. The results highlight the reasonable correlation between the impedance response and the Rp values by LPR method, but the corrosion rates obtained by EIS are lower than those results of LPR.


Sign in / Sign up

Export Citation Format

Share Document