Effect of Polyvinyl Alcohol Fiber Volume Fraction on Pullout Behavior of Structural Synthetic Fiber in Hybrid Fiber Reinforced Cement Composites

2011 ◽  
Vol 23 (4) ◽  
pp. 461-469 ◽  
Author(s):  
Jin-Hyung Lee ◽  
Chan-Gi Park
2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


2013 ◽  
Vol 539 ◽  
pp. 99-102
Author(s):  
Hai Tao Tan ◽  
Wu Yao ◽  
Xiao Ming Song ◽  
Shuai Dong

The ultimate load, fracture energy and equivalent bending strength of hybrid steel fiber reinforced mortar were investigated with a constant fiber volume fraction in this paper. The results showed that ultimate load of hybrid steel-fiber reinforced mortar was higher than that of mono-fiber reinforced mortar; fracture energy and equivalent bending strength increased with the volume fraction of steel fiber with end hooks.


2014 ◽  
Vol 629-630 ◽  
pp. 299-305 ◽  
Author(s):  
Rotana Hay ◽  
Claudia Ostertag

The synergy of hybrid fibers allows for an enhanced concrete composite performance at a lower fiber volume fraction as compared to other types of fiber-reinforced concrete. This paper outlines the development process and properties of a new concrete composite termed high-performance green hybrid fiber-reinforced concrete (HP-G-HyFRC). Steel and polyvinyl alcohol (PVA) fibers were used as discontinuous reinforcement of the composite. Up to 60% of cement by mass was replaced by industrial wastes comprising slag and fly ash. At water-binder ratio of 0.25 and with the presence of coarse aggregates, careful proportioning of the mix constituents allows for a composite that is highly flowable. At a combined fiber volume fraction of only 1.65%, the composite also exhibits a deflection hardening behavior which is known to be beneficial for both serviceability and durability of structures. The composite was proposed to be used in an innovative double skin façade (DSF) system consisting of 30 mm air gap in between two thin HP-G-HyFRC skins with no main reinforcing rebars. It was shown that the DSF system alone allows for about 7.6% reduction of cooling energy in buildings.


2021 ◽  
Vol 5 (4) ◽  
pp. 94
Author(s):  
Toshiyuki Kanakubo ◽  
Takumi Koba ◽  
Kohei Yamada

The objective of this study is to investigate the flexural characteristics of functionally graded fiber-reinforced cementitious composite (FG-FRCC) concerning the fiber volume fraction (Vf) varying in layers and the layered effect in bending specimens. The FG-FRCC specimens, in which Vf increases from 0% in the compression zone to 2% in the tensile zone, are three-layered specimens using polyvinyl alcohol (PVA) FRCC that are fabricated and tested by a four-point bending test. The maximum load of the FG-FRCC specimens exhibits almost twice that of homogeneous specimens, even when the average of the fiber volume fraction in the whole specimen is 1%. The result of the section analysis, in which the stress–strain models based on the bridging law (tensile stress–crack width relationship owned by the fibers) consider the fiber orientation effect, shows a good adaptability with the experiment result.


2010 ◽  
Vol 34-35 ◽  
pp. 1445-1448 ◽  
Author(s):  
Shu Guang Liu ◽  
Cun He ◽  
Chang Wang Yan ◽  
Xiao Ming Zhao

This paper mainly studies early anti-cracking of cementitious composites containing polyvinyl alcohol (PVA) fiber and fly ash (FA). The PVA fibers were added at the volume fractions of 0%, 0.25%, 0.5%, 1.0% and 2.0%. The percentages of FA used in the experiment were 0% and 15%. Experimental results show that the maximum crack width and total crack area can be reduced with the increase of volume fraction of PVA fiber, and that no crack appeared at the volume fraction of 2.0%. The reducing tendency of crack width and total crack area kept constant with addition of FA, but reducing amplitude decreased. When the PVA fiber volume fraction remains constant, the early anti-cracking properties of cementitious composites containing PVA fiber and common cement are superior to one containing PVA fiber and FA. Conclusions can be drawn that the early anti-cracking properties of cementitious composites can be improved by PVA fiber.


Author(s):  
Saman Hedjazi ◽  
Daniel Castillo

This paper evaluates the effect of discrete fibers in concrete on the pulse velocity and mechanical properties of FRC. Two different type of synthetic fibers consisting of Polypropylene and Nylon were investigated. The effect of concrete mix proportions such as types of fiber, volume fraction of fiber, water-to-cement ratio (w/c), and curing conditions were examined. An experimental program was designed and conducted on 100 mm x 200 mm cylindrical specimens to evaluate the properties of FRC. The compressive strength obtained from the Compression Test Machine (CTM) was compared to those calculated from UPV. The difference between two types of synthetic fibers on concrete properties were investigated. Results show that the highest compressive strength of Polypropylene Fiber Reinforced Concrete (PFRC) was achieved at 0.5% fiber volume fraction, whereas for Nylon Fiber Reinforced Concrete (NFRC) the highest compressive strength was obtained at 1.0% fiber volume fraction. Additionally, results show that the available equations relating UPV to compressive strength of concrete need modifications when used for different fibers. Therefore, either new or modified empirical equations are needed for better estimation of mechanical properties of FRC.


Sign in / Sign up

Export Citation Format

Share Document