calcium sulphoaluminate
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 36)

H-INDEX

20
(FIVE YEARS 5)

Author(s):  
Suresh Palla ◽  
Suresh Vanguri ◽  
S Ramakrishna ◽  
S K Chaturvedi ◽  
B N Mohapatra

The cement industry has been identified as one of the main contributors to climate change due to greenhouse gas emissions, mainly CO2. Therefore, to meet CO2 reduction targets, cement producers are working on different methods of minimizing its emission, one of which is alternative clinkers. This study assessed the impact of variations of the raw mix design, concerning the type and proportions of materials, on the formation of calcium sulphoaluminate belite-type clinkers. Various materials were used to produce raw mixes for different percentages of belite, yeeliminite, and other minerals in resultant clinkers. Computer-based theoretical mix designs were designed with different percentages of SiO2, CaO, Al2O3, Fe2O3, and SO3 and then the designed mixes were fired in a laboratory furnace at 1250oC with 20 min retention time. The resultant clinker samples were characterized with X-ray diffraction for product minerals. The quantification of minerals in every sample was carried out with Rietveld refinement. The obtained results confirmed the correlation between the mineralogy and chemical constituents in the raw mix. The C4AF percentage of the resultant clinker samples increased with an increase in Fe2O3 percentage. C4A3$ content varied with the amounts of Al2O3, SO3, and CaO. The mineral percentage of C2S in the designed mixes had a clear correlation with the constituents of SiO2 and CaO. Anhydrite percentage in the resultant minerals changed with the SO3 content in the raw mix. These results should aid in the determination of the optimum amount of chemical constituents and minerals required for the development of calcium sulphoaluminate clinker.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7834
Author(s):  
Yongjie Bian ◽  
Yongbo Huang ◽  
Fuxin Li ◽  
Dong Dong ◽  
Honggen Zhao ◽  
...  

Polyvinyl alcohol (PVA) and calcium sulphoaluminate (CSA) cement were used to prepare repair mortar for the restoration of the walls of a building built with bricks. The preparation, hydration, and properties of the PVA-modified CSA cement repair mortar were studied. Besides this, the mechanism by which PVA improves the bonding strength is also discussed. The results demonstrate that PVA prolongs the setting time of CSA cement, which is ascribed to PVA inhibiting the dissolution of C4A3$ (4CaO·3Al2O3·SO3) and the precipitation of AFt (3CaO·Al2O3·3CaSO4·26H2O) within the hydration age of 0~60 min. PVA lowers the mechanical strength of CSA cement repair mortar at the hydration age of 6 h. After 6 h, the mechanical strength is improved. PVA could also improve the bonding strength between CSA repair mortar and bricks. This is mainly ascribed to the Al ions in both the hydration products of CSA cement and the clay bricks reacting with the hydroxyl group of PVA and forming the chemical bond C-O-Al. Therefore, a tighter combination between CSA cement repair mortar and the clay bricks forms, thereby improving the bonding strength.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7057
Author(s):  
Bogdan-Catalin Marin ◽  
Georgeta Voicu ◽  
Stefania Stoleriu

Starting from natural raw materials, cements based calcium sulphoaluminate (CSA) clinkers have been successfully obtained as an eco-friendly alternative to ordinary Portland cement. CSA-based cements with ye’elimite as the main phase have been produced over the years and are widely used today. In this regard, the present paper considers the study of hydration processes for CSA pastes prepared with a water/cement ratio of 0.5 according to the EN-197 standard and their characterization by thermal analysis (DTA-TG), X-ray diffraction analysis (XRD), and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). A mechanical strength of 60.9 MPa was the greatest achieved for mortars hardened for 28 days.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7011
Author(s):  
Małgorzata Gołaszewska ◽  
Barbara Klemczak ◽  
Jacek Gołaszewski

This paper presents the results of research into the heat of hydration and activation energy of calcium sulphoaluminate (CSA) cement in terms of the dependence on curing temperature and water/cement ratio. Cement pastes with water/cement ratios in the range of 0.3–0.6 were tested by isothermal calorimetry at 20 °C, 35 °C and 50 °C, with the evolved hydration heat and its rate monitored for 168 h from mixing water with cement. Reference pastes with ordinary Portland cement (OPC) were also tested in the same range. The apparent activation energy of CSA and OPC was determined based on the results of the measurements. CSA pastes exhibited complex thermal behaviour that differed significantly from the thermal behaviour of ordinary Portland cement. The results show that both the w/c ratio and elevated temperature have a meaningful effect on the heat emission and the hydration process of CSA cement pastes. The determined apparent activation energy of CSA revealed its substantial variability and dependence, both on the w/c ratio and the curing temperature.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhongyu Chen ◽  
Jianhong Fang ◽  
Feng Ming ◽  
Yuhang Liu

With the increasing number of infrastructures constructed in marine and cold regions, research on and applications of calcium sulphoaluminate (CSA) cement have been flourished, but the hydration process of CSA at low temperature has not been systematically investigated. To characterize the influence of low temperature on the hydration characteristics, freshly mixed CSA mortars were cured at −10, −5, 0, 5, and 20°C, respectively. The hydration process was investigated by electrical resistivity, compressive strength, and microstructure analyses. Results show that the hydration process (especially the induction period) is lengthened by low curing temperature. Both the electrical resistivity and compressive strength increase with an increase in the curing temperature. The compressive strength was reduced at a low curing temperature. Among these five curing temperatures, 5°C is the optimal curing temperature. Low temperatures do not change the kinds of hydrates, but reduce their amount. The scanning electron microscopy results illustrate that fewer hydrates fill the pores in specimens cured at low temperatures, while more hydrates form at higher temperatures. Moreover, low curing temperature contributes to the formation of coarse ettringite crystals. For the cement used at low temperature, the induction period should be reduced by adjusting the calcining process and composition proportion.


Author(s):  
Antonio Telesca ◽  
Milena Marroccoli ◽  
Luigi Coppola ◽  
Denny Coffetti ◽  
Sebastiano Candamano

Sign in / Sign up

Export Citation Format

Share Document