scholarly journals Estimation of the ground shaking from the response of rigid bodies

2016 ◽  
Vol 59 ◽  
Author(s):  
Filomena de Silva ◽  
Stefania Sica ◽  
Francesco Silvestri ◽  
Stefano Aversa

<p>The paper illustrates and compares simplified approaches to interpret the mechanisms of damage observed on rigid bodies in the cemetery of Amatrice, after the main shock (August 24, 2016, M<sub>W</sub>=6.0) of the Central Italy earthquake. The final goal of the work is to link the observed movements of the fallen objects to specific characteristics of the ground motion occurred at the specific site.</p>

2016 ◽  
Vol 59 ◽  
Author(s):  
Licia Faenza ◽  
Valentino Lauciani ◽  
Alberto Michelini

In this paper we describe the performance of the ShakeMap software package and the fully automatic procedure, based on manually revised location and magnitude, during the main event of the Amatrice sequence with special emphasis to the M6 main shock, that struck central Italy on the 24th August 2016 at 1:36:32 UTC. Our results show that the procedure we developed in the last years, with real-time data exchange among those institutions acquiring strong motion data, allows to provide a faithful description of the ground motion experienced throughout a large region in and around the epicentral  area. The prompt availability of the rupture fault model, within three hours after the earthquake occurrence, provided a better descriptions of the level of strong ground motion throughout the affected area.  Progressive addition of  station data and  manual verification of the data insures improvements in the description of the experienced ground motions.  In particular, comparison between the MCS intensity shakemaps and preliminary field macroseismic reports show favourable similarities.  Finally the overall  spatial pattern of the ground motion of the main shock is consistent with reported rupture directivity toward NW and reduced levels of ground shaking toward SW probably linked to the peculiar source effects of the earthquake.


2018 ◽  
Vol 34 (4) ◽  
pp. 1671-1691 ◽  
Author(s):  
Silvia Mazzoni ◽  
Giulio Castori ◽  
Carmine Galasso ◽  
Paolo Calvi ◽  
Richard Dreyer ◽  
...  

The 2016–2017 Central Italy earthquake sequence consisted of several moderately high-magnitude earthquakes, between M5.5 and M6.5, each centered in a different location and with its own sequences of aftershocks spanning several months. To study the effects of this earthquake sequence on the built environment and the impact on the communities, a collaborative reconnaissance effort was organized by the Earthquake Engineering Research Institute (EERI), the Eucentre Foundation, the European Centre for Training and Research in Earthquake Engineering (EUCentre), and the Rete dei Laboratori Universitari di Ingegneria Sismica (ReLuis). The effort consisted of two reconnaissance missions: one following the Amatrice Earthquake of 24 August 2016 and one after the end of the earthquake sequence, in May 2017. One objective of the reconnaissance effort was to evaluate existing strengthening methodologies and assess their effectiveness in mitigating the damaging effects of ground shaking. Parallel studies by the Geotechnical Extreme Events Reconnaissance (GEER) Association, presented in a companion paper, demonstrate that variations in-ground motions due to topographic site effects had a significant impact on damage distribution in the affected area. This paper presents that, in addition to these ground motion variations, variations in the vulnerability of residential and critical facilities were observed to have a significant impact on the level of damage in the region. The damage to the historical centers of Amatrice and Norcia will be used in this evaluation: the historical center of Amatrice was devastated by the sequence of earthquakes; the significant damage in Norcia was localized to individual buildings. Amatrice has not experienced the same number of devastating earthquakes as Norcia in the last 150 years. As a result, its building stock is much older than that of Norcia and there appeared to be little visual evidence of strengthening of the buildings. The distribution of damage observed throughout the region was found to be indicative of the effectiveness of strengthening and of the need for a comprehensive implementation of retrofit policies.


2018 ◽  
Vol 34 (4) ◽  
pp. 1721-1737 ◽  
Author(s):  
Maria Giovanna Durante ◽  
Luigi Di Sarno ◽  
Paolo Zimmaro ◽  
Jonathan P. Stewart

The region of the central Apennines affected by the 2016 earthquake sequence has numerous towns, villages, and isolated dwellings connected by local secondary roads and a few state highways. The roadway network includes several bridges that are important to the economy of the region and play an important role in the post-earthquake resilience of local communities. Within this network, 12 bridges and a rockfall protection tunnel were inspected in coordination with local officials, with relatively cursory reconnaissance of most of the remainder of the network. All inspected reinforced concrete and steel–concrete composite bridges performed adequately. Two historic masonry bridges near Amatrice and Tufo suffered significant damage after the 24 August 2016 main shock, and collapsed after the 30 October 2016 event. Recovery strategies related to the bridge collapse near Amatrice, where two temporary bridges were built within 10 days from the first main shock in August, are discussed. An inspected rockfall protection tunnel experienced earthquake pounding effects.


2009 ◽  
Vol 51 (2-3) ◽  
Author(s):  
A. Emolo ◽  
G. Cultrera ◽  
G. Franceschina ◽  
F. Pacor ◽  
V. Convertito ◽  
...  

2016 ◽  
Vol 59 ◽  
Author(s):  
Iunio Iervolino ◽  
Georgios Baltzopoulos ◽  
Eugenio Chioccarelli

An earthquake of estimated local magnitude (ML) 6.0 struck central Italy on the 24th of August (01:36:32 UTC) in the vicinity of Accumoli (close to Rieti, central Italy) initiating a long-lasting seismic sequence that also featured events of larger magnitude within a few months. The earthquake caused widespread building damage and around three-hundred fatalities. Ground motion was recorded by hundreds of seis-mic stations. This work uses accelerometric records for a preliminary discussion, from the earthquake en-gineering perspective, of strong motion caused by the earthquake. Peak and integral ground motion inten-sity measures, are presented. The response spectra at some select stations are analysed with respect to the code-mandated design actions for various return periods at the recording sites. Hazard disaggregation for different return periods is discussed referring to the site of the epicentre of the earthquake. Finally, some preliminary considerations are made concerning the impact of rupture propagation on near-source ground motion; i.e., the records are scanned for traces of pulse-like forward-directivity effects.


Sign in / Sign up

Export Citation Format

Share Document