earthquake resilience
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 39)

H-INDEX

6
(FIVE YEARS 1)

2022 ◽  
Vol 189 ◽  
pp. 107056
Author(s):  
Ai-Lin Zhang ◽  
Xin Chen ◽  
Zi-Qin Jiang ◽  
Yi-Tao Kang ◽  
Xiao-Feng Yang

Vibration ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 602-647
Author(s):  
Cem Yenidogan

Earthquake Seismic isolation plays an important role in achieving sustainable earthquake resilience communities. Seismic isolation method is a justified, mature, and reliable performance enhancement strategy for a wide range of structural systems and valuable contents. As a result of the targeted response modification, high-performance expectations and earthquake resilience can be achieved during the service life of the structures that are compliant with the design code requirements. Design and analysis procedures of isolation systems in standards were evolved substantially to expand the use of isolation technology and quantify the benefits of isolation systems to overcome the existing impediments. Strictly speaking, new tools are offered to the engineering community to highlight the possible issues that may appear in isolation units beyond the design basis earthquake level to improve the accuracy of response prediction. This paper aims to overview the characteristics of frequently used isolation systems in the industry with mathematical models, design criteria toward sustainable communities, the current state of practice along with the set forth design requirements of selectively well-known standards with special emphasis to the ELF procedure from the perspective of performance-based design philosophy. Additionally, two large-scale seismic isolation applications in the world are given as benchmark studies for the new construction and upgrading scheme in the content of the study.


CERUCUK ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
A. Rizki Fauzi ◽  
Markawie Markawie

The bridge at the Seluang-1 river is located around the palm oil plantation land owned by PT Lifere Agro Kapuas, Kapuas Regency, Central Kalimantan. In this Seluang-1 river, a bridge is planned to be built to facilitate the mobilization of palm oil plantation crops and other matters as well as transportation in the PT Lifere Agro Kapuas area because before there was a bridge the transportation traffic was cut off by the river so it had to circle quite a long way. The bridge is designed as a bridge with composite girder structure type.          The methodology in the design of loading uses the SNI 1725-2016 concerning on the Loading Standards for Bridges and SNI 2833-2016 concerning on the Earthquake Resilience Planning Standards for Bridges. For methodology in designing concrete structures refer to SNI 2847-2013 concerning Structural Concrete Requirements for Buildings and methodology in designing steel structures refers to SNI 1729-2015 concerning Specifications for Structural Steel Buildings. The material used for abutment uses reinforced concrete material. The methodology in calculating the bearing capacity of the foundation uses the method by Mayerhof and also the method by Kazuto Nakazawa, while the methodology in calculating the lateral bearing capacity uses the Broms method, with the efficiency of the pile using a graph by O’Neill.          From the results of topographic measurements taken a bridge design with a span of 30 m with a total bridge width of 7 m. The slab design is 25 cm thick with the compressive strenght of concrete is fc’ 30 MPa (K-350). The steel girder beam used WF Profile 1350.800.100.130 and the diaphragm beam used WF Profile 250.125.6.9 with BJ55 steel quality (fy 410 MPa). Whereas in the lower structure, the abutment designed with a height of 350 cm, a width of 320 cm and a length of 850 cm, was used with compressive strenght of concrete is fc’ 30 MPa (K-350). In the foundation used Spun Pile type piles with a diameter of 60 cm with a depth of 30 m piling as much as 8 piles on one abutment. Obtained Qallow = 116,37 tons > Qload = 114,69 tons so that the foundation is declared safe. The planned budget for the construction of a bridge on the Seluang-1 river is Rp 8.990.566.000,00.-              


Sign in / Sign up

Export Citation Format

Share Document