scholarly journals Structure of the crust and uppermost mantle beneath the Sicily channel from ambient noise and earthquake tomography

2020 ◽  
Vol 63 (Vol 63 (2020)) ◽  
Author(s):  
Radia Kherchouche ◽  
Merzouk Ouyed ◽  
Abdelkrim Aoudia ◽  
Billel Mellouk ◽  
Ahmed Saadi

•  In this work, we study the crust and the uppermost mantle structure beneath the Sicily Channel, by applying the ambient noise and earthquake tomography method. After computing cross-correlation of the continuous ambient noise signals and processing the earthquake data, we extracted 104 group velocity and 68 phase velocity dispersion curves corresponding to the fundamental mode of the Rayleigh waves. We computed the average velocity of those dispersion curves to obtain tomographic maps at periods ranging from 5 s to 40 s for the group velocities and from 10 s to 70 for the phase velocities. We inverted group and phase speeds to get the shear-wave velocity structure from the surface down to 100 km depth with a lateral resolution of about 200 km. The resulted velocity models reveal a thin crust with thickness value of 15 km beneath the southern part of the Tyrrhenian basin and a thickness value of 20 km beneath Mount Etna. The obtained thickness values are well correlated with the reported extension of the Tyrrhenian lithosphere due to the past earthquake tomography subduction and rollback of the Ionian slab beneath the Calabrian Arc. The crustal thickness increases and reaches values between 28 and 30 km beneath the Tunisian coasts and Sicily Channel. The S-wave models reveal also the presence of high velocity body beneath the island of Sicily. This finding can be interpreted as the presence of the Ionian slab subducting beneath the Calabrian Arc. Another high velocity body is observed beneath the southern part of the Tyrrhenian basin, it might be interpreted as the presence of fragments of the African continental lithosphere beneath the  Tyrrhenian basin.

2021 ◽  
Author(s):  
Iván Cabrera Pérez ◽  
Jean Soubestre ◽  
Luca D'Auria ◽  
Germán Cervigón-Tomico ◽  
David Martínez van Dorth ◽  
...  

<p>The island of Gran Canaria is located in the Canarian Archipelago, with an area of 1560 km<sup>2 </sup>and a maximum altitude of 1956 m.a.s.l., being the third island of the archipelago in terms of extension and altitude. The island has two very well differentiated geological domains: the southwest domain or Paleo-Canarias, which is the geologically oldest part, and the northeast domain or Neo-Canarias, where are located the vents of the most recent Holocene eruptions. This volcanic island hosted Holocene eruptions. Therefore, apart from being affected by volcanic risk, it potentially hosts geothermal resources that could be exploited to increase the percentage of renewable energy in the Canary Islands.</p><p>The main objective of this work is to use Ambient Noise Tomography (ANT) for retrieving a high-resolution seismic velocity model of the first few kilometres of the crust, to improve local earthquake location and detect anomalies potentially related to active geothermal reservoirs. Currently, the 1-D velocity model of the island does not allow a correct determination of the hypocenters, being unable to take into account the substantial horizontal velocity contrasts correctly.</p><p>To realize the ANT, we deployed 28 temporary broadband seismic stations in two phases. Each campaign lasted at least one month. We also exploited data recorded by the permanent seismic network Red Sísmica Canaria (C7) operated by INVOLCAN. After applying standard data processing to retrieve Green’s functions from ambient noise cross-correlations, we retrieved the dispersion curves using the FTAN (Frequency Time ANalysis) technique. The inversion of dispersion curves to obtain group velocity maps was realized using a novel non-linear multiscale tomographic approach (MAnGOSTA, Multiscale Ambient NOiSe TomogrAphy). The forward modelling of surface waves traveltimes was implemented using a shortest-path algorithm that allows the topography to be taken into account. The MANgOSTA method consists of successive non-linear inversion steps on progressively finer grids. This technique allows retrieving 2-D group velocity models in the presence of substantial velocity contrasts with up to 100% of the relative variation. Then, we performed a depth inversion of the Rayleigh wave dispersion curves using a transdimensional Bayesian formulation. The final result is a 3-D model of P- and S-wave velocities of the island. The preliminary results show the presence of a low-velocity zone in the eastern part of the island that coincides spatially with anomalies observed in previous geophysical and geochemical studies and which could be related to actual or fossil geothermal reservoirs. Furthermore, the model shows the presence of high-velocity anomalies that are associated with the mafic core of the island.</p>


2021 ◽  
Author(s):  
Giovanni Diaferia ◽  
Fabrizio Magrini ◽  
Matthew Agius ◽  
Fabio Cammarano

<p><span>The dynamics of crustal extension and the crust-mantle interaction i</span>n the Central-Western Mediterranean and Italian peninsula (i.e. Liguro-Provençal and Tyrrhenian Basin), and plate convergence (i.e. Alpine and Apennines chains) are key for the understating of the current geodynamics setting and its evolution<span> in the region</span>. However, open questions <span>such as the style, depth and extent of the deformation </span>still exist despite the wealth of seismological and non-seismological data acquired in the past decades. In this context, it is necessary to provide improved subsurface models in terms of seismic velocities, from which better constraints on the geodynamic models can be derived.</p><p>We use seismic ambient noise for retrieving phase velocities of Rayleigh and Love waves in the 4-35 s period range, using private (LiSard network<span> in Sardinia island</span>) and publicly available continuous recordings from more than 500 seismic stations. Considering the excellent coverage and the short period of recovered phase velocities, our study aims to provide an unprecedented, high-resolution image of the shallow crust and uppermost mantle.</p><p>We employ a Bayesian trans-<span>dimensional</span>, Monte Carlo Markov chain inversion approach that requires no a-priori model nor a fixed parametrization. In addition to the (isotropic) shear wave velocity structure, we also recover the values of radial anisotropy (ξ=(V<sub>SH</sub>/V<sub>SV</sub>)<sup>2</sup>) as a function of depth, thanks to the joint inversion of both Rayleigh and Love phase velocities.</p><p>Focusing on radial anisotropy, this appears clearly uncoupled with respect to the shear wave velocity structure. The largest negative anisotropy anomalies (V<sub>SH</sub><V<sub>SV</sub>, ξ<0.9) are found in the Liguro-Provençal and western Tyrrhenian basins in the top 10-15 km, suggesting a common structural imprint inherited during the extensional phases of such basins. Conversely, the eastern Tyrrhenian basin shows positive radial anisotropy (V<sub>SH</sub>>V<sub>SV</sub>, ξ>1.1) within the same depth range. This evidence, combined with the observed shear wave velocities typical of the uppermost mantle, corroborates the presence of a sub-horizontal asthenospheric flow driving the current extension and <span>oceanization </span>of the eastern Tyrrhenian basins.</p><p>Moving towards the Italian mainland, a strong anomaly of negative anisotropy appears in the eastern portion of the Apennines chain. We relate such an anisotropic signal with the ongoing compressive regime affecting the area. Here, the high-angle thrust faults and folds, that accommodates the horizontal shortening, obliterate the horizontal layering of the sedimentary deposits, currently constituting the flanks of the fold system.</p><p>Our results suggest that the combination of radial anisotropy and shear wave velocities can unravel key characteristics of the crust and uppermost mantle, such as inherited or currently active structures resulting from past or ongoing geodynamic processes.</p>


2016 ◽  
Vol 20 (1) ◽  
pp. 1-11 ◽  
Author(s):  
V. Corchete

<p>The elastic structure beneath Greenland is shown by means of S-velocity maps for depths ranging from zero to 350 km, determined by the regionalization and inversion of Rayleigh-wave dispersion. The traces of 50 earthquakes, occurring from 1990 to 2011, have been used to obtain Rayleigh-wave dispersion data. These earthquakes were registered by 21 seismic station located in Greenland and the surrounding area. The dispersion curves were obtained for periods between 5 and 200 s, by digital filtering with a combination of MFT (Multiple Filter Technique) and TVF (Time Variable Filtering). Later, all seismic events (and some stations) were grouped to obtain a dispersion curve for each source-station path. These dispersion curves were regionalized and inverted according to the generalized inversion theory, to obtain shear-wave velocity models for a rectangular grid of 16x20 points. The shear-velocity structure obtained through this procedure is shown in the S-velocity maps plotted for several depths. These results agree well with the geology and other geophysical results previously obtained. The obtained S-velocity models suggest the existence of lateral and vertical heterogeneity. The zones with consolidated and old structures present greater S-velocity values than the other zones, although this difference can be very little or negligible in some case. Nevertheless, in the depth range of 15 to 45 km, the different Moho depths present in the study area generate the principal variation of S-velocity. A similar behaviour is found for the depth range from 80 to 230 km, in which the lithosphere-asthenosphere boundary (LAB) generates the principal variations of S-velocity. Finally, the new and interesting feature obtained in this study: the definition of the base of the asthenosphere (for the whole study area and for depths ranging from 130 to 280 km, respectively) should be highlighted.</p><p> </p><p><strong>Estructura de velocidad de cizalla de Groenlandia obtenida de análisis de onda Rayleigh</strong></p><p><strong><br /></strong></p><p><strong>Resumen</strong></p><p>La estructura elástica bajo Groenlandia es mostrada por medio de mapas de velocidad de onda para profundidades variando desde cero a 350 km, determinada por la regionalización e inversión de la dispersión de onda Rayleigh. Las trazas de 50 terremotos, ocurridos desde 1990 hasta 2011, han sido usados para obtener datos de dispersión de onda Rayleigh. Estos terremotos fueron registrados por 21 estaciones sísmicas localizadas en Groenlandia y el área circundante. Las curvas de dispersión fueron obtenidas para periodos entre 5 y 200 s, por filtrado digital con una combinación de MFT (Técnica de Filtrado Múltiple) y TVF (Filtrado en Tiempo Variable). Después, todos los eventos sísmicos (y algunas estaciones) fueron agrupados para obtener una curva de dispersión para cada trayecto fuente-estación. Estas curvas de dispersión fueron regionalizadas e invertidas de acuerdo con la teoría de la inversión generalizada, para obtener modelos de velocidad de cizalla para una rejilla rectangular de 16x20 puntos. La estructura de velocidad de cizalla obtenida a través de este procedimiento es mostrada in los mapas de velocidad de onda S representados para varias profundidades. Estos resultados muestran buen acuerdo con la geología y con otros resultados geofísicos obtenidos previamente. Los modelos de velocidad de onda S obtenidos sugieren la existencia de heterogeneidad lateral y vertical. Las zonas con estructuras antiguas y consolidadas presentan mayores valores de velocidad de onda S que las otras zonas, aunque esta diferencia puede ser muy pequeña o despreciable en algún caso. No obstante, en el rango de profundidad de 15 a 45 km, las diferentes profundidades del Moho presentes en el área de estudio generan la principal variación de velocidad de onda S. Un comportamiento similar es encontrado para el rango de profundidad desde 80 a 230 km, en el cual la frontera litosfera-astenosfera (LAB) genera las principales variaciones de velocidad de onda S. Finalmente, debería ser destacada la nueva e interesante característica obtenida en este estudio: la definición de la base de la astenosfera (para el área de estudio completa y para profundidades variando desde 130 a 280 km, respectivamente).</p>


Author(s):  
Hamzeh Sadeghisorkhani ◽  
Ólafur Gudmundsson ◽  
Ka Lok Li ◽  
Ari Tryggvason ◽  
Björn Lund ◽  
...  

Summary Rayleigh-wave phase-velocity tomography of southern Sweden is presented using ambient seismic noise at 36 stations (630 station pairs) of the Swedish National Seismic Network (SNSN). We analyze one year (2012) of continuous recordings to get the first crustal image based on the ambient-noise method in the area. Time-domain cross-correlations of the vertical component between the stations are computed. Phase-velocity dispersion curves are measured in the frequency domain by matching zero crossings of the real spectra of cross-correlations to the zero crossings of the zeroth-order Bessel function of the first kind. We analyze the effect of uneven source distributions on the phase-velocity dispersion curves and correct for the estimated velocity bias before tomography. To estimate the azimuthal source distribution to determine the bias, we perform inversions of amplitudes of cross-correlation envelopes in a number of period ranges. Then, we invert the measured and bias-corrected dispersion curves for phase-velocity maps at periods between 3 and 30 s. In addition, we investigate the effects of phase-velocity bias corrections on the inverted tomographic maps. The difference between bias corrected and uncorrected phase-velocity maps is small ($&lt; 1.2 \%$), but the correction significantly reduces the residual data variance at long periods where the bias is biggest. To obtain a shear velocity model, we invert for a one-dimensional velocity profile at each geographical node. The results show some correlation with surface geology, regional seismicity and gravity anomalies in the upper crust. Below the upper crust, the results agree well with results from other seismological methods.


2021 ◽  
Author(s):  
Daniela Teodor ◽  
Charles Beard ◽  
Laura Alejandra Pinzon-Rincon ◽  
Aurélien Mordret ◽  
François Lavoué ◽  
...  

&lt;p&gt;Ambient noise surface wave tomography (ANSWT) is an environmentally friendly and cost-effective technique for subsurface imaging. In this study, we used natural (low-frequency) and anthropogenic (high-frequency) noise sources to map the velocity structure of the Marathon Cu-PGE deposit (Ontario, Canada) to a depth of 1 km. The Marathon deposit is a circular (&amp;#248; = 25 km) alkaline intrusion comprising gabbros at the rim and an overlying series of syenites in the centre. Cu-PGE mineralisation is hosted by gabbros close to the inward-dipping footwall of the intrusion. The country rocks are Archaean volcanic breccias that are seismically slower than the gabbros, and similar in velocity to the syenites. We used ANSWT to image the footwall contact that controls the location of the mineralisation.&lt;/p&gt;&lt;p&gt;An array of 1024 vertical-component receivers were deployed for 30 days to record ambient noise required for surface wave analysis. Two overlapping grids were used: a 200 m x 6040 m dense array with node spacing of 50 m, and a 2500 m x 4000 m sparse array with node spacing of 150 m.&amp;#160; The signal was down-sampled to 50 Hz, divided into segments of 30 minutes, cross-correlated and stacked. Surface wave analysis was conducted over the dense array and the sparse array data. We considered the fundamental mode of Rayleigh wave propagation for our frequency-wavenumber (F-K) analysis and focused on the phase velocity variation in the high-frequency ambient noise signal (up to 22 Hz). We reconstructed the shallow structure with progressively increased resolution using surface wave dispersion curves extracted from receiver arrays divided into segments of variable lengths. Several average dispersion curves were computed from individual dispersion curves belonging to different seismic lines. Each average dispersion curve was inverted to obtain S-wave velocity models using an McMC transdimensional Bayesian approach.&lt;/p&gt;&lt;p&gt;The tomographic images reveal a shallow high-velocity anomaly, which we interpret as being related to the gabbro intrusion that hosts the mineralization. The large-wavelength&amp;#160;structures in the S-wave velocity models are relatively consistent with the geological structures inferred from surface mapping and drill core data. These results show that the ANSWT, focused on the high-frequency signal provided by anthropogenic noise sources, is an efficient technique for imaging &amp;#8220;shallow&quot; (1 km depth) geological structures in a mineral exploration context.&amp;#160;&lt;/p&gt;


2019 ◽  
Vol 109 (5) ◽  
pp. 1922-1934 ◽  
Author(s):  
Liam D. Toney ◽  
Robert E. Abbott ◽  
Leiph A. Preston ◽  
David G. Tang ◽  
Tori Finlay ◽  
...  

Abstract In preparation for the next phase of the Source Physics Experiments, we acquired an active‐source seismic dataset along two transects totaling more than 30 km in length at Yucca Flat, Nevada, on the Nevada National Security Site. Yucca Flat is a sedimentary basin which has hosted more than 650 underground nuclear tests (UGTs). The survey source was a novel 13,000 kg modified industrial pile driver. This weight drop source proved to be broadband and repeatable, richer in low frequencies (1–3 Hz) than traditional vibrator sources and capable of producing peak particle velocities similar to those produced by a 50 kg explosive charge. In this study, we performed a joint inversion of P‐wave refraction travel times and Rayleigh‐wave phase‐velocity dispersion curves for the P‐ and S‐wave velocity structure of Yucca Flat. Phase‐velocity surface‐wave dispersion measurements were obtained via the refraction microtremor method on 1 km arrays, with 80% overlap. Our P‐wave velocity models verify and expand the current understanding of Yucca Flat’s subsurface geometry and bulk properties such as depth to Paleozoic basement and shallow alluvium velocity. Areas of disagreement between this study and the current geologic model of Yucca Flat (derived from borehole studies) generally correlate with areas of widely spaced borehole control points. This provides an opportunity to update the existing model, which is used for modeling groundwater flow and radionuclide transport. Scattering caused by UGT‐related high‐contrast velocity anomalies substantially reduced the number and frequency bandwidth of usable dispersion picks. The S‐wave velocity models presented in this study agree with existing basin‐wide studies of Yucca Flat, but are compromised by diminished surface‐wave coherence as a product of this scattering. As nuclear nonproliferation monitoring moves from teleseismic to regional or even local distances, such high‐frequency (>5  Hz) scattering could prove challenging when attempting to discriminate events in areas of previous testing.


Sign in / Sign up

Export Citation Format

Share Document