scholarly journals Reflection Full Waveform Inversion with Decoupled Elastic-wave Equations in Inhomogeneous Medium

2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Zhanyuan Liang ◽  
Guochen Wu ◽  
Xiaoyu Zhang ◽  
Qingyang Li

Reflection full-waveform inversion (RFWI) can reduce the nonlinearity of inversion providing an accurate initial velocity model for full-waveform inversion (FWI) through the tomographic components (low-wavenumber). However, elastic-wave reflection full-waveform inversion (ERFWI) is more vulnerable to the problem of local minimum due to the complicated multi-component wavefield. Our algorithm first divides kernels of ERFWI into four subkernels based on the theory of decoupled elastic-wave equations. Then we try to construct the tomographic components of ERFWI with only single-component wavefields, similarly to acoustic inversions. However, the S-wave velocity is still vulnerable to the coupling effects because of P-wave components contained in the S-wavefield in an inhomogeneous medium. Therefore we develop a method for decoupling elastic- wave equations in an inhomogeneous medium, which is applied to the decomposition of kernels in ERFWI. The new decoupled system can improve the accuracy of S-wavefield and hence further reduces the high-wavenumber crosstalk in the subkernel of S-wave velocity after kernels are decomposed. The numerical examples of Sigsbee2A model demonstrate that our ERFWI method with decoupled elastic-wave equations can efficiently recover the low-wavenumber components of the model and improve the precision of the S-wave velocity.

Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R185-R206 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen ◽  
Yu Geng ◽  
Junxiao Li

Simultaneous determination of multiple physical parameters using full-waveform inversion (FWI) suffers from interparameter trade-off difficulties. Analyzing the interparameter trade-offs in different model parameterizations of isotropic-elastic FWI, and thus determining the appropriate model parameterization, are critical for efficient inversion and obtaining reliable inverted models. Five different model parameterizations are considered and compared including velocity-density, modulus-density, impedance-density, and two velocity-impedance parameterizations. The scattering radiation patterns are first used for interparameter trade-off analysis. Furthermore, a new framework is developed to evaluate the interparameter trade-off based upon multiparameter Hessian-vector products: Multiparameter point spread functions (MPSFs) and interparameter contamination sensitivity kernels (ICSKs), which provide quantitative, second-order measurements of the interparameter contaminations. In the numerical experiments, the interparameter trade-offs in various model parameterizations are evaluated using the MPSFs and ICSKs. Inversion experiments are carried out with simple Gaussian-anomaly models and a complex Marmousi model. Overall, the parameterization of the P-wave velocity, S-wave velocity, and density, and the parameterization of the P-wave velocity, S-wave velocity, and S-wave impedance perform best for reconstructing all of the physical parameters. Isotropic-elastic FWI of the Hussar low-frequency data set with various model parameterizations verifies our conclusions.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. R109-R119 ◽  
Author(s):  
Timothy J. Sears ◽  
Penny J. Barton ◽  
Satish C. Singh

Elastic full waveform inversion of multichannel seismic data represents a data-driven form of analysis leading to direct quantification of the subsurface elastic parameters in the depth domain. Previous studies have focused on marine streamer data using acoustic or elastic inversion schemes for the inversion of P-wave data. In this paper, P- and S-wave velocities are inverted for using wide-angle multicomponent ocean-bottom cable (OBC) seismic data. Inversion is undertaken using a two-dimensional elastic algorithm operating in the time domain, which allows accurate modeling and inversion of the full elastic wavefield, including P- and mode-converted PS-waves and their respective amplitude variation with offset (AVO) responses. Results are presented from the application of this technique to an OBC seismic data set from the Alba Field, North Sea. After building an initial velocity model and extracting a seismic wavelet, the data are inverted instages. In the first stage, the intermediate wavelength P-wave velocity structure is recovered from the wide-angle data and then the short-scale detail from near-offset data using P-wave data on the [Formula: see text] (vertical geophone) component. In the second stage, intermediate wavelengths of S-wave velocity are inverted for, which exploits the information captured in the P-wave’s elastic AVO response. In the third stage, the earlier models are built on to invert mode-converted PS-wave events on the [Formula: see text] (horizontal geophone) component for S-wave velocity, targeting first shallow and then deeper structure. Inversion of [Formula: see text] alone has been able to delineate the Alba Field in P- and S-wave velocity, with the main field and outlier sands visible on the 2D results. Inversion of PS-wave data has demonstrated the potential of using converted waves to resolve shorter wavelength detail. Even at the low frequencies [Formula: see text] inverted here, improved spatial resolution was obtained by inverting S-wave data compared with P-wave data inversion results.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. B87-B107 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen ◽  
Yanfei Wang

Elastic full-waveform inversion (FWI) in transversely isotropic media with a vertical symmetry axis (VTI) is applied to field walk-away vertical seismic profile (W-VSP) data acquired in Western Canada. The performance of VTI-elastic FWI is significantly influenced by the model parameterization choice. Synthetic analysis based on specific field survey configuration is carried out to evaluate three different VTI-elastic model parameterizations. Interparameter trade-offs are quantified using the recently introduced interparameter contamination sensitivity kernel approach. Synthetic results suggest that neglecting anisotropy leads to inaccurate velocity estimations. For the conventional vertical velocity-Thomsen’s parameter parameterization (i.e., vertical P-wave velocity, vertical S-wave velocity, Thomsen’s parameters [Formula: see text] and [Formula: see text]), a sequential inversion strategy is designed to reduce strong natural interparameter trade-offs. The model parameterizations of elastic-constant ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]) and velocity-based (vertical, horizontal, and normal move-out P-wave velocities and vertical S-wave velocity) models appear to suffer from fewer interparameter trade-offs, providing more reliable velocity and anisotropy models. Results derived from application of VTI-elastic FWI to the field W-VSP data set tend to support the synthetic conclusions. Multiparameter point spread functions are calculated to quantify the local interparameter trade-offs of the inverted models. The output inversion results are interpreted to provide valuable references regarding the target hydrocarbon reservoir.


2021 ◽  
Author(s):  
Tan Qin ◽  
Thomas Bohlen ◽  
Yudi Pan

<p>Shallow-seismic surface wave and ground penetrating radar (GPR) are employed in a wide range of engineering and geosciences applications. Full-waveform inversion (FWI) of either seismic or multi-offset GPR data are able to provide high-resolution subsurface characterization and have received particular attention in the past decade. Those two geophysical methods are involved in the increasing requirements of comprehensive site and material investigations. However, it is still challenging to provide an effective integration between seismic data and electromagnetic data. In this paper, we investigated the joint petrophysical inversion (JPI) of shallow-seismic and multi-offset GPR data for more consistent imaging of near surface. As a bridge between the seismic parameters (P-wave velocity, S-wave velocity, and density) and GPR parameters (relative dielectric permittivity and electric conductivity), the petrophysical relationships with the parameters namely porosity and saturation are employed to link two data sets. We first did a sensitivity analysis of the petrophysical parameters to the seismic and GPR parameters and then determined an efficient integration of using shallow-seismic FWI to update porosity and GPR FWI to update saturation, respectively. A comparison of several parameterisation combinations shows that the seismic velocity parameterisation in shallow-seismic FWI and a modified logarithm parameterisation in GPR FWI works well in reconstructing reliable S-wave velocity and relative dielectric permittivity models, respectively. With the help from the petrophysical links, we realized JPI by transforming those well recovered parameters to the petrophysical parameters and then to other seismic and GPR parameters. A synthetic test indicates that, compared with the individual petrophysical inversion and individual FWI, JPI outperforms in simultaneously reconstructing all seismic, GPR, and petrophysical parameters with higher resolution and improved details. It is proved that JPI would be a potential data integration approach for the shallow subsurface investigation.</p>


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. R99-R123 ◽  
Author(s):  
Zhiming Ren ◽  
Yang Liu

Elastic full-waveform inversion (FWI) updates model parameters by minimizing the residuals of the P- and S-wavefields, resulting in more local minima and serious nonlinearity. In addition, the coupling of different parameters degrades the inversion results. To address these problems, we have developed a hierarchical elastic FWI scheme based on wavefield separation and a multistep-length gradient approach. First, we have derived the gradients expressed by different wave modes; analyzed the crosstalk between various parameters; and evaluated the sensitivity of separated P-wave, separated S-wave, and P- and S-wave misfit functions. Then, a practical four-stage inversion workflow was developed. In the first stage, conventional FWI is used to achieve rough estimates of the P- and S-wave velocities. In the second stage, we only invert the P-wave velocity applying the separated P-wavefields when strong S-wave energy is involved, or we merely update the S-wave velocity by matching the separated S-wavefields for the weak S-wave case. The PP and PS gradient formulas are used in these two cases, respectively. Therefore, the nonlinearity of inversion and the crosstalk between parameters are greatly reduced. In the third stage, the multistep-length gradient scheme is adopted. The density structure can be improved owing to the use of individual step lengths for different parameters. In the fourth stage, we make minor adjustments to the recovered P- and S-wave velocities and density by implementing conventional FWI again. Synthetic examples have determined that our hierarchical FWI scheme with the aforementioned steps obtains more plausible models than the conventional method. Inversion results of each stage and any three stages reveal that wavefield decomposition and the multistep-length approach are helpful to improve the accuracy of velocities and density, respectively, and all the stages of our hierarchical FWI method are necessary to give a good recovery of P- and S-wave velocities and density.


Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


2020 ◽  
Vol 222 (2) ◽  
pp. 1164-1177
Author(s):  
Nikolaos Athanasopoulos ◽  
Edgar Manukyan ◽  
Thomas Bohlen ◽  
Hansruedi Maurer

SUMMARY Full-waveform inversion of shallow seismic wavefields is a promising method to infer multiparameter models of elastic material properties (S-wave velocity, P-wave velocity and mass density) of the shallow subsurface with high resolution. Previous studies used either the refracted Pwaves to reconstructed models of P-wave velocity or the high-amplitude Rayleigh waves to infer the S-wave velocity structure. In this work, we propose a combination of both wavefields using continuous time–frequency windowing. We start with the contribution of refracted P waves and gradually increase the time window to account for scattered body waves, higher mode Rayleigh waves and finally the fundamental Rayleigh wave mode. The opening of the time window is combined with opening the frequency bandwidth of input signals to avoid cycle skipping. Synthetic reconstruction tests revealed that the reconstruction of P-wave velocity model and mass density can be improved. The S-wave velocity reconstruction is still accurate and robust and is slightly benefitted by time–frequency windowing. In a field data application, we observed that time–frequency windowing improves the consistency of multiparameter models. The inferred models are in good agreement with independent geophysical information obtained from ground-penetrating radar and full-waveform inversion of SH waves.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. B335-B351 ◽  
Author(s):  
Wenyong Pan ◽  
Kristopher A. Innanen

Viscoelastic full-waveform inversion is applied to walk-away vertical seismic profile data acquired at a producing heavy-oil field in Western Canada for the determination of subsurface velocity models (P-wave velocity [Formula: see text] and S-wave velocity [Formula: see text]) and attenuation models (P-wave quality factor [Formula: see text] and S-wave quality factor [Formula: see text]). To mitigate strong velocity-attenuation trade-offs, a two-stage approach is adopted. In Stage I, [Formula: see text] and [Formula: see text] models are first inverted using a standard waveform-difference (WD) misfit function. Following this, in Stage II, different amplitude-based misfit functions are used to estimate the [Formula: see text] and [Formula: see text] models. Compared to the traditional WD misfit function, the amplitude-based misfit functions exhibit stronger sensitivity to attenuation anomalies and appear to be able to invert [Formula: see text] and [Formula: see text] models more reliably in the presence of velocity errors. Overall, the root-mean-square amplitude-ratio and spectral amplitude-ratio misfit functions outperform other misfit function choices. In the final outputs of our inversion, significant drops in the [Formula: see text] to [Formula: see text] ratio (~1.6) and Poisson’s ratio (~0.23) are apparent within the Clearwater Formation (depth ~0.45–0.50 km) of the Mannville Group in the Western Canada Sedimentary Basin. Strong [Formula: see text] (~20) and [Formula: see text] (~15) anomalies are also evident in this zone. These observations provide information to help identify the target attenuative reservoir saturated with heavy-oil resources.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R271-R293 ◽  
Author(s):  
Nuno V. da Silva ◽  
Gang Yao ◽  
Michael Warner

Full-waveform inversion deals with estimating physical properties of the earth’s subsurface by matching simulated to recorded seismic data. Intrinsic attenuation in the medium leads to the dispersion of propagating waves and the absorption of energy — media with this type of rheology are not perfectly elastic. Accounting for that effect is necessary to simulate wave propagation in realistic geologic media, leading to the need to estimate intrinsic attenuation from the seismic data. That increases the complexity of the constitutive laws leading to additional issues related to the ill-posed nature of the inverse problem. In particular, the joint estimation of several physical properties increases the null space of the parameter space, leading to a larger domain of ambiguity and increasing the number of different models that can equally well explain the data. We have evaluated a method for the joint inversion of velocity and intrinsic attenuation using semiglobal inversion; this combines quantum particle-swarm optimization for the estimation of the intrinsic attenuation with nested gradient-descent iterations for the estimation of the P-wave velocity. This approach takes advantage of the fact that some physical properties, and in particular the intrinsic attenuation, can be represented using a reduced basis, substantially decreasing the dimension of the search space. We determine the feasibility of the method and its robustness to ambiguity with 2D synthetic examples. The 3D inversion of a field data set for a geologic medium with transversely isotropic anisotropy in velocity indicates the feasibility of the method for inverting large-scale real seismic data and improving the data fitting. The principal benefits of the semiglobal multiparameter inversion are the recovery of the intrinsic attenuation from the data and the recovery of the true undispersed infinite-frequency P-wave velocity, while mitigating ambiguity between the estimated parameters.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. B311-B324 ◽  
Author(s):  
Laura Gassner ◽  
Tobias Gerach ◽  
Thomas Hertweck ◽  
Thomas Bohlen

Evidence for gas-hydrate occurrence in the Western Black Sea is found from seismic measurements revealing bottom-simulating reflectors (BSRs) of varying distinctness. From an ocean-bottom seismic data set, low-resolution traveltime-tomography models of P-wave velocity [Formula: see text] are constructed. They serve as input for acoustic full-waveform inversion (FWI), which we apply to derive high-resolution parameter models aiding the interpretation of the seismic data for potential hydrate and gas deposits. Synthetic tests indicate the applicability of the FWI approach to robustly reconstruct [Formula: see text] models with a typical hydrate and gas signature. Models of S-wave velocity [Formula: see text] containing a hydrate signature can only be reconstructed when the parameter distribution of [Formula: see text] is already well-known. When we add noise to the modeled data to simulate field-data conditions, it prevents the reconstruction of [Formula: see text] completely, justifying the application of an acoustic approach. We invert for [Formula: see text] models from field data of two parallel profiles of 14 km length with a distance of 1 km. Results indicate a characteristic velocity trend for hydrate and gas occurrence at BSR depth in the first of the analyzed profiles. We find no indications for gas accumulations below the BSR on the second profile and only weak indications for hydrate. These differences in the [Formula: see text] signature are consistent with the reflectivity behavior of the migrated seismic streamer data of both profiles in which a zone of high-reflectivity amplitudes is coincident with the potential gas zone derived from the FWI result. Calculating saturation estimates for the potential hydrate and gas zones yields values of up to 30% and 1.2%, respectively.


Sign in / Sign up

Export Citation Format

Share Document