scholarly journals Finely homogeneous computations in free Lie algebras

1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
Philippe Andary

International audience We first give a fast algorithm to compute the maximal Lyndon word (with respect to lexicographic order) of \textitLy_α (A) for every given multidegree alpha in \textbfN^k. We then give an algorithm to compute all the words living in \textitLy_α (A) for any given α in \textbfN^k. The best known method for generating Lyndon words is that of Duval [1], which gives a way to go from every Lyndon word of length n to its successor (with respect to lexicographic order by length), in space and worst case time complexity O(n). Finally, we give a simple algorithm which uses Duval's method (the one above) to compute the next standard bracketing of a Lyndon word for lexicographic order by length. We can find an interesting application of this algorithm in control theory, where one wants to compute within the command Lie algebra of a dynamical system (letters are actually vector fields).

Author(s):  
Shahriar Aslani ◽  
Patrick Bernard

Abstract In the study of Hamiltonian systems on cotangent bundles, it is natural to perturb Hamiltonians by adding potentials (functions depending only on the base point). This led to the definition of Mañé genericity [ 8]: a property is generic if, given a Hamiltonian $H$, the set of potentials $g$ such that $H+g$ satisfies the property is generic. This notion is mostly used in the context of Hamiltonians that are convex in $p$, in the sense that $\partial ^2_{pp} H$ is positive definite at each point. We will also restrict our study to this situation. There is a close relation between perturbations of Hamiltonians by a small additive potential and perturbations by a positive factor close to one. Indeed, the Hamiltonians $H+g$ and $H/(1-g)$ have the same level one energy surface, hence their dynamics on this energy surface are reparametrisation of each other, this is the Maupertuis principle. This remark is particularly relevant when $H$ is homogeneous in the fibers (which corresponds to Finsler metrics) or even fiberwise quadratic (which corresponds to Riemannian metrics). In these cases, perturbations by potentials of the Hamiltonian correspond, up to parametrisation, to conformal perturbations of the metric. One of the widely studied aspects is to understand to what extent the return map associated to a periodic orbit can be modified by a small perturbation. This kind of question depends strongly on the context in which they are posed. Some of the most studied contexts are, in increasing order of difficulty, perturbations of general vector fields, perturbations of Hamiltonian systems inside the class of Hamiltonian systems, perturbations of Riemannian metrics inside the class of Riemannian metrics, and Mañé perturbations of convex Hamiltonians. It is for example well known that each vector field can be perturbed to a vector field with only hyperbolic periodic orbits, this is part of the Kupka–Smale Theorem, see [ 5, 13] (the other part of the Kupka–Smale Theorem states that the stable and unstable manifolds intersect transversally; it has also been studied in the various settings mentioned above but will not be discussed here). In the context of Hamiltonian vector fields, the statement has to be weakened, but it remains true that each Hamiltonian can be perturbed to a Hamiltonian with only non-degenerate periodic orbits (including the iterated ones), see [ 11, 12]. The same result is true in the context of Riemannian metrics: every Riemannian metric can be perturbed to a Riemannian metric with only non-degenerate closed geodesics, this is the bumpy metric theorem, see [ 1, 2, 4]. The question was investigated only much more recently in the context of Mañé perturbations of convex Hamiltonians, see [ 9, 10]. It is proved in [ 10] that the same result holds: if $H$ is a convex Hamiltonian and $a$ is a regular value of $H$, then there exist arbitrarily small potentials $g$ such that all periodic orbits (including iterated ones) of $H+g$ at energy $a$ are non-degenerate. The proof given in [ 10] is actually rather similar to the ones given in papers on the perturbations of Riemannian metrics. In all these proofs, it is very useful to work in appropriate coordinates around an orbit segment. In the Riemannian case, one can use the so-called Fermi coordinates. In the Hamiltonian case, appropriate coordinates are considered in [ 10,Lemma 3.1] itself taken from [ 3, Lemma C.1]. However, as we shall detail below, the proof of this Lemma in [ 3], Appendix C, is incomplete, and the statement itself is actually wrong. Our goal in the present paper is to state and prove a corrected version of this normal form Lemma. Our proof is different from the one outlined in [ 3], Appendix C. In particular, it is purely Hamiltonian and does not rest on the results of [ 7] on Finsler metrics, as [ 3] did. Although our normal form is weaker than the one claimed in [ 10], it is actually sufficient to prove the main results of [ 6, 10], as we shall explain after the statement of Theorem 1, and probably also of the other works using [ 3, Lemma C.1].


2021 ◽  
pp. 136943322199249
Author(s):  
Riza Suwondo ◽  
Lee Cunningham ◽  
Martin Gillie ◽  
Colin Bailey

This study presents robustness analyses of a three-dimensional multi-storey composite steel structure under the action of multiple fire scenarios. The main objective of the work is to improve current understanding of the collapse resistance of this type of building under different fire situations. A finite element approach was adopted with the model being firstly validated against previous studies available in the literature. The modelling approach was then used to investigate the collapse resistance of the structure for the various fire scenarios examined. Different sizes of fire compartment are considered in this study, starting from one bay, three bays and lastly the whole ground floor as the fire compartment. The investigation allows a fundamental understanding of load redistribution paths and member interactions when local failure occurs. It is concluded that the robustness of the focussed building in a fire is considerably affected by the size of fire compartments as well as fire location. The subject building can resist progressive collapse when the fire occurs only in the one-bay compartment. On the other hand, total collapse occurs when fire is located in the edge three-bay case. This shows that more than one fire scenario needs to be taken into consideration to ensure that a structure of this type can survive from collapse in the worst-case situation.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 560 ◽  
Author(s):  
Luboš Brim ◽  
Samuel Pastva ◽  
David Šafránek ◽  
Eva Šmijáková

Boolean network (BN) is a simple model widely used to study complex dynamic behaviour of biological systems. Nonetheless, it might be difficult to gather enough data to precisely capture the behavior of a biological system into a set of Boolean functions. These issues can be dealt with to some extent using parametrised Boolean networks (ParBNs), as this model allows leaving some update functions unspecified. In our work, we attack the control problem for ParBNs with asynchronous semantics. While there is an extensive work on controlling BNs without parameters, the problem of control for ParBNs has not been in fact addressed yet. The goal of control is to ensure the stabilisation of a system in a given state using as few interventions as possible. There are many ways to control BN dynamics. Here, we consider the one-step approach in which the system is instantaneously perturbed out of its actual state. A naïve approach to handle control of ParBNs is using parameter scan and solve the control problem for each parameter valuation separately using known techniques for non-parametrised BNs. This approach is however highly inefficient as the parameter space of ParBNs grows doubly exponentially in the worst case. We propose a novel semi-symbolic algorithm for the one-step control problem of ParBNs, that builds on symbolic data structures to avoid scanning individual parameters. We evaluate the performance of our approach on real biological models.


1999 ◽  
Vol 352 (2) ◽  
pp. 901-934 ◽  
Author(s):  
R. M. Bryant ◽  
Ralph Stöhr

2018 ◽  
Vol 132 ◽  
pp. 222-229
Author(s):  
Eivind Schneider
Keyword(s):  

2004 ◽  
Vol 15 (10) ◽  
pp. 987-1005 ◽  
Author(s):  
MAHMOUD BENKHALIFA

Let R be a principal and integral domain. We say that two differential graded free Lie algebras over R (free dgl for short) are weakly equivalent if and only if the homologies of their corresponding enveloping universal algebras are isomophic. This paper is devoted to the problem of how we can characterize the weakly equivalent class of a free dgl. Our tool to address this question is the Whitehead exact sequence. We show, under a certain condition, that two R-free dgls are weakly equivalent if and only if their Whitehead sequences are isomorphic.


Author(s):  
C. J. Atkin

In a long sequence of notes in the Comptes Rendus and elsewhere, and in the papers [1], [2], [3], [6], [7], Lichnerowicz and his collaborators have studied the ‘classical infinite-dimensional Lie algebras’, their derivations, automorphisms, co-homology, and other properties. The most familiar of these algebras is the Lie algebra of C∞ vector fields on a C∞ manifold. Another is the Lie algebra of ‘Poisson brackets’, that is, of C∞ functions on a C∞ symplectic manifold, with the Poisson bracket as composition; some questions concerning this algebra are of considerable interest in the theory of quantization – see, for instance, [2] and [3].


2019 ◽  
Vol 14 (2) ◽  
Author(s):  
Paolo Venini

An innovative approach to topology optimization of dynamic system is introduced that is based on the system transfer-function H∞-norm. As for the structure, the proposed strategy allows to determine the optimal material distribution that ensures the minimization of a suitable goal function, such as (an original definition of) the dynamic compliance. Load uncertainty is accounted for by means of a nonprobabilistic convex-set approach (Ben-Haim and Elishakoff, 1990, Convex Models of Uncertainty in Applied Mechanics, Elsevier Science, Amsterdam). At each iteration, the worst load is determined as the one that maximizes the current dynamic compliance so that the proposed strategy fits the so-called worst case scenario (WCS) approach. The overall approach consists of the repeated solution of the two steps (minimization of the dynamic compliance with respect to structural parameters and maximization of the dynamic compliance with respect to the acting load) until convergence is achieved. Results from representative numerical studies are eventually presented along with extensions to the proposed approach that are currently under development.


2001 ◽  
Vol 16 (23) ◽  
pp. 1479-1486 ◽  
Author(s):  
A. A. BYTSENKO ◽  
A. E. GONÇALVES ◽  
S. ZERBINI

The non-planar contribution to the effective potentials for massless scalar and vector quantum field theories on D-dimensional manifold with p compact noncommutative extra dimensions is evaluated by means of dimensional regularization implemented by zeta function techniques. It is found that, the zeta function associated with the one-loop operator may not be regular at the origin. Thus, the related heat kernel trace has a logarithmic term in the short t asymptotic expansion. Consequences of this fact are briefly discussed.


2018 ◽  
Vol 18 (3) ◽  
pp. 337-344 ◽  
Author(s):  
Ju Tan ◽  
Shaoqiang Deng

AbstractIn this paper, we consider a special class of solvable Lie groups such that for any x, y in their Lie algebras, [x, y] is a linear combination of x and y. We investigate the harmonicity properties of invariant vector fields of this kind of Lorentzian Lie groups. It is shown that any invariant unit time-like vector field is spatially harmonic. Moreover, we determine all vector fields which are critical points of the energy functional restricted to the space of smooth vector fields.


Sign in / Sign up

Export Citation Format

Share Document