scholarly journals Bott-Samelson Varieties, Subword Complexes and Brick Polytopes

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Laura Escobar

International audience Bott-Samelson varieties factor the flag variety $G/B$ into a product of $\mathbb{C}\mathbb{P}^1$'s with a map into $G/B$. These varieties are mostly studied in the case in which the map into $G/B$ is birational; however in this paper we study fibers of this map when it is not birational. We will see that in some cases this fiber is a toric variety. In order to do so we use the moment map of a Bott-Samelson variety to translate this problem into a purely combinatorial one in terms of a subword complex. These simplicial complexes, defined by Knutson and Miller, encode a lot of information about reduced words in a Coxeter system. Pilaud and Stump realized certain subword complexes as the dual to the boundary of a polytope which generalizes the brick polytope defined by Pilaud and Santos. For a nice family of words, the brick polytope is the generalized associahedron realized by Hohlweg and Lange. These stories connect in a nice way: the moment polytope of a fiber of the Bott-Samelson map is the Brick polytope. In particular, we give a nice description of the toric variety of the associahedron.

10.37236/5038 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Laura Escobar

Bott-Samelson varieties are a twisted product of $\mathbb{C}\mathbb{P}^1$'s with a map into $G/B$. These varieties are mostly studied in the case in which the map into $G/B$ is birational to the image; however in this paper we study a fiber of this map when it is not birational. We prove that in some cases the general fiber, which we christen a brick manifold, is a toric variety. In order to do so we use the moment map of a Bott-Samelson variety to translate this problem into one in terms of the "subword complexes" of Knutson and Miller. Pilaud and Stump realized certain subword complexes as the dual of the boundary of a polytope which generalizes the brick polytope defined by Pilaud and Santos. For a nice family of words, the brick polytope is the generalized associahedron realized by Hohlweg, Lange and Thomas. These stories connect in a nice way: we show that the moment polytope of the brick manifold is the brick polytope. In particular, we give a nice description of the toric variety of the associahedron. We give each brick manifold a stratification dual to the subword complex. In addition, we relate brick manifolds to Brion's resolutions of Richardon varieties.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Emmanuel Tsukerman ◽  
Lauren Williams

International audience Let $u$ and $v$ be permutations on $n$ letters, with $u$ &le; $v$ in Bruhat order. A <i>Bruhat interval polytope</i> $Q_{u,v}$ is the convex hull of all permutation vectors $z=(z(1),z(2),...,z(n))$ with $u$ &le; $z$ &le; $v$. Note that when $u=e$ and $v=w_0$ are the shortest and longest elements of the symmetric group, $Q_{e,w_0}$ is the classical permutohedron. Bruhat interval polytopes were studied recently in the 2013 paper “The full Kostant-Toda hierarchy on the positive flag variety” by Kodama and the second author, in the context of the Toda lattice and the moment map on the flag variety. In this paper we study combinatorial aspects of Bruhat interval polytopes. For example, we give an inequality description and a dimension formula for Bruhat interval polytopes, and prove that every face of a Bruhat interval polytope is a Bruhat interval polytope. A key tool in the proof of the latter statement is a generalization of the well-known lifting property for Coxeter groups. Motivated by the relationship between the lifting property and $R$-polynomials, we also give a generalization of the standard recurrence for $R$-polynomials. Soient $u$ et $v$ des permutations sur $n$ lettres, avec, $u$ &le; $v$ dans l’ordre de Bruhat. Un <i>polytope d’intervalles de Bruhat</i> $Q_{u,v}$ est l’enveloppe convexe de tous les vecteurs de permutations $z=(z(1),z(2),...,z(n))$ avec $u$ &le; $z$ &le; $v$. Notons que lorsque $u=e$ et $v=w_0$ sont respectivement le plus court et le plus long élément du groupe symétrique, $Q_{e,w_0}$ est le permutoèdre classique. Les polytopes d’intervalles de Bruhat ont été étudiés récemment dans le papier de 2013 “The full Kostant-Toda hierarchy on the positive flag variety” par Kodama et le deuxième auteur, dans le contexte du treillis de Toda et la carte des moments sur la variété de drapeaux. Dans ce papier nous étudions des aspects combinatoires des polytopes d’intervalles de Bruhat. Par exemple, nous donnons une description par inégalités et une formule dimensionnelle pour les polytopes d’intervalles de Bruhat, et prouvons que chaque face d’un polytope d’intervalles de Bruhat est un polytope d’intervalles de Bruhat. Un outil essentiel dans la preuve de cette dernière affirmation est une généralisation de la célèbre propriété de lifting pour les groupes de Coxeter. Motivés par la relation entre la propriété de lifting et les $R$-polynômes, nous donnons aussi une généralisation de la récurrence standard pour les $R$-polynômes.


2010 ◽  
Vol 62 (2) ◽  
pp. 473-480 ◽  
Author(s):  
Zhiwei Yun

AbstractWe use the fixed point arrangement technique developed by Goresky and MacPherson to calculate the part of the equivariant cohomology of the affine flag variety ℱ ℓ G generated by degree 2. We use this result to show that the vertices of the moment map image of ℱ ℓ G lie on a paraboloid.


2013 ◽  
Vol 24 (05) ◽  
pp. 1350038 ◽  
Author(s):  
BUMSIG KIM ◽  
HWAYOUNG LEE

Given a double quiver, we study homological algebra of twisted quiver sheaves with the moment map relation using the short exact sequence of Crawley-Boevey, Holland, Gothen, and King. Then in a certain one-parameter space of the stability conditions, we obtain a wall-crossing formula for the generalized Donaldson–Thomas invariants of the abelian category of framed twisted quiver sheaves on a smooth projective curve. To do so, we closely follow the approach of Chuang, Diaconescu and Pan in the ADHM quiver case, which makes use of the theory of Joyce and Song. The invariants virtually count framed twisted quiver sheaves with the moment map relation and directly generalize the ADHM invariants of Diaconescu.


2017 ◽  
Vol 24 (4) ◽  
pp. 539-554 ◽  
Author(s):  
Tom Roberts

The notion that the Earth has entered a new epoch characterized by the ubiquity of anthropogenic change presents the social sciences with something of a paradox, namely, that the point at which we recognize our species to be a geologic force is also the moment where our assumed metaphysical privilege becomes untenable. Cultural geography continues to navigate this paradox in conceptually innovative ways through its engagements with materialist philosophies, more-than-human thinking and experimental modes of ontological enquiry. Drawing upon the philosophy of Gilbert Simondon, this article contributes to these timely debates by articulating the paradox of the Anthropocene in relation to technological processes. Simondon’s philosophy precedes the identification of the Anthropocene epoch by a number of decades, yet his insistence upon situating technology within an immanent field of material processes resonates with contemporary geographical concerns in a number of important ways. More specifically, Simondon’s conceptual vocabulary provides a means of framing our entanglements with technological processes without assuming a metaphysical distinction between human beings and the forces of nature. In this article, I show how Simondon’s concepts of individuation and transduction intersect with this technological problematic through his far-reaching critique of the ‘hylomorphic’ distinction between matter and form. Inspired by Simondon’s original account of the genesis of a clay brick, the article unfolds these conceptual challenges through two contrasting empirical encounters with 3D printing technologies. In doing so, my intention is to lend an affective consistency to Simondon’s problematic, and to do so in a way that captures the kinds of material mutations expressive of a particular technological moment.


1996 ◽  
Vol 126 (1) ◽  
pp. 65-84 ◽  
Author(s):  
Peter Heinzner ◽  
Alan Huckleberry

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Aleix Gimenez-Grau ◽  
Pedro Liendo

Abstract We apply the numerical conformal bootstrap to correlators of Coulomb and Higgs branch operators in 4d$$ \mathcal{N} $$ N = 2 superconformal theories. We start by revisiting previous results on single correlators of Coulomb branch operators. In particular, we present improved bounds on OPE coefficients for some selected Argyres-Douglas models, and compare them to recent work where the same cofficients were obtained in the limit of large r charge. There is solid agreement between all the approaches. The improved bounds can be used to extract an approximate spectrum of the Argyres-Douglas models, which can then be used as a guide in order to corner these theories to numerical islands in the space of conformal dimensions. When there is a flavor symmetry present, we complement the analysis by including mixed correlators of Coulomb branch operators and the moment map, a Higgs branch operator which sits in the same multiplet as the flavor current. After calculating the relevant superconformal blocks we apply the numerical machinery to the mixed system. We put general constraints on CFT data appearing in the new channels, with particular emphasis on the simplest Argyres-Douglas model with non-trivial flavor symmetry.


Sign in / Sign up

Export Citation Format

Share Document