compact expression
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 12)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 3 (3) ◽  
pp. 500-516
Author(s):  
Oscar Rosas-Ortiz ◽  
Kevin Zelaya

Photon subtraction is useful to produce nonclassical states of light addressed to applications in photonic quantum technologies. After a very accelerated development, this technique makes possible obtaining either single photons or optical cats on demand. However, it lacks theoretical formulation enabling precise predictions for the produced fields. Based on the representation generated by the two-mode SU(2) coherent states, we introduce a model of entangled light beams leading to the subtraction of photons in one of the modes, conditioned to the detection of any photon in the other mode. We show that photon subtraction does not produce nonclassical fields from classical fields. It is also derived a compact expression for the output field from which the calculation of conditional probabilities is straightforward for any input state. Examples include the analysis of squeezed-vacuum and odd-squeezed states. We also show that injecting optical cats into a beam splitter gives rise to entangled states in the Bell representation.


Author(s):  
Alexandros Vassiliades ◽  
Theodore Patkos ◽  
Giorgos Flouris ◽  
Antonis Bikakis ◽  
Nick Bassiliades ◽  
...  

Argumentative discourse rarely consists of opinions whose claims apply universally. As with logical statements, an argument applies to specific objects in the universe or relations among them, and may have exceptions. In this paper, we propose an argumentation formalism that allows associating arguments with a domain of application. Appropriate semantics are given, which formalise the notion of partial argument acceptance, i.e. the set of objects or relations that an argument can be applied to. We show that our proposal is in fact equivalent to the standard Argumentation Frameworks of Dung, but allows a more intuitive and compact expression of some core concepts of commonsense and non-monotonic reasoning, such as the scope of an argument, exceptions, relevance and others.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Congkao Wen ◽  
Shun-Qing Zhang

Abstract We present a compact formula in Mellin space for the four-point tree-level holographic correlators of chiral primary operators of arbitrary conformal weights in (2, 0) supergravity on AdS3× S3, with two operators in tensor multiplet and the other two in gravity multiplet. This is achieved by solving the recursion relation arising from a hidden six-dimensional conformal symmetry. We note the compact expression is obtained after carefully analysing the analytic structures of the correlators. Various limits of the correlators are studied, including the maximally R-symmetry violating limit and flat-space limit.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Bei Kang ◽  
Lu-Yao Wang ◽  
Ke Wu ◽  
Jie Yang ◽  
Wei-Zhong Zhao

Abstract We analyze the rainbow tensor model and present the Virasoro constraints, where the constraint operators obey the Witt algebra and null 3-algebra. We generalize the method of W-representation in matrix model to the rainbow tensor model, where the operators preserving and increasing the grading play a crucial role. It is shown that the rainbow tensor model can be realized by acting on elementary function with exponent of the operator increasing the grading. We derive the compact expression of correlators and apply it to several models, i.e., the red tensor model, Aristotelian tensor model and r = 4 rainbow tensor model. Furthermore, we discuss the case of the non-Gaussian red tensor model and present a dual expression for partition function through differentiation.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Luca Griguolo ◽  
Jacopo Papalini ◽  
Domenico Seminara

Abstract We study the perturbative series associated to bi-local correlators in Jackiw-Teitelboim (JT) gravity, for positive weight λ of the matter CFT operators. Starting from the known exact expression, derived by CFT and gauge theoretical methods, we reproduce the Schwarzian semiclassical expansion beyond leading order. The computation is done for arbitrary temperature and finite boundary distances, in the case of disk and trumpet topologies. A formula presenting the perturbative result (for λ ∈ ℕ/2) at any given order in terms of generalized Apostol-Bernoulli polynomials is also obtained. The limit of zero temperature is then considered, obtaining a compact expression that allows to discuss the asymptotic behaviour of the perturbative series. Finally we highlight the possibility to express the exact result as particular combinations of Mordell integrals.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
David J. Gross ◽  
Vladimir Rosenhaus

Abstract Motivated by the desire to understand chaos in the S-matrix of string theory, we study tree level scattering amplitudes involving highly excited strings. While the amplitudes for scattering of light strings have been a hallmark of string theory since its early days, scattering of excited strings has been far less studied. Recent results on black hole chaos, combined with the correspondence principle between black holes and strings, suggest that the amplitudes have a rich structure. We review the procedure by which an excited string is formed by repeatedly scattering photons off of an initial tachyon (the DDF formalism). We compute the scattering amplitude of one arbitrary excited string and any number of tachyons in bosonic string theory. At high energies and high mass excited state these amplitudes are determined by a saddle-point in the integration over the positions of the string vertex operators on the sphere (or the upper half plane), thus yielding a generalization of the “scattering equations”. We find a compact expression for the amplitude of an excited string decaying into two tachyons, and study its properties for a generic excited string. We find the amplitude is highly erratic as a function of both the precise excited string state and of the tachyon scattering angle relative to its polarization, a sign of chaos.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sergei M. Kuzenko ◽  
Kai Turner

Abstract In d dimensions, the model for a massless p-form in curved space is known to be a reducible gauge theory for p > 1, and therefore its covariant quantisation cannot be carried out using the standard Faddeev-Popov scheme. However, adding a mass term and also introducing a Stueckelberg reformulation of the resulting p-form model, one ends up with an irreducible gauge theory which can be quantised à la Faddeev and Popov. We derive a compact expression for the massive p-form effective action, $$ {\Gamma}_p^{(m)} $$ Γ p m , in terms of the functional determinants of Hodge-de Rham operators. We then show that the effective actions $$ {\Gamma}_p^{(m)} $$ Γ p m and $$ {\Gamma}_{d-p-1}^{(m)} $$ Γ d − p − 1 m differ by a topological invariant. This is a generalisation of the known result in the massless case that the effective actions Γp and Γd−p−2 coincide modulo a topological term. Finally, our analysis is extended to the case of massive super p-forms coupled to background $$ \mathcal{N} $$ N = 1 supergravity in four dimensions. Specifically, we study the quantum dynamics of the following massive super p-forms: (i) vector multiplet; (ii) tensor multiplet; and (iii) three-form multiplet. It is demonstrated that the effective actions of the massive vector and tensor multiplets coincide. The effective action of the massive three-form is shown to be a sum of those corresponding to two massive scalar multiplets, modulo a topological term.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Jun Ni ◽  
Rui Liu ◽  
Yu Sun

Abstract Part mating gaps need to be effectively adjusted during the assembly of products and greatly affect the working performance. This paper develops an algorithm to calculate the dimensional and aerodynamic indexes affected by part mating gaps. Mating gaps are expressed by displacements of one contact surface, and indexes are evaluated by displacements of key surface, when the surface is ready to compare with the other. A graph that denotes contacts as nodes and related paths through the physical domain as lines is proposed to express assembly sequences and hierarchies. A variable is defined to combine the time set with the displacement set. Boolean algebraic theorems are extended to derive a compact expression for the contact graph that supports the organization of accumulations at different surfaces with propagations through physical domains. Demonstrations of this method using three products exhibit the general applicability, and the application shows that the performance deviations of the centrifugal fan and axial turbine are apparent. In particular, the isentropic efficiency is good with a certain probability, despite turbines having mating gaps. The algorithm benefits both design and assembly: design can be performed through the fluid domain, which is affected by the mating gaps, and when the parts are being adjusted, the selected tolerance limit allows engineers to monitor key surfaces to ensure good aerodynamic performance.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 459
Author(s):  
Nikolay Shubin ◽  
Alexander Gorbatsevich ◽  
Gennadiy Krasnikov

We study the transport properties of multi-terminal Hermitian structures within the non-equilibrium Green’s function formalism in a tight-binding approximation. We show that non-Hermitian Hamiltonians naturally appear in the description of coherent tunneling and are indispensable for the derivation of a general compact expression for the lead-to-lead transmission coefficients of an arbitrary multi-terminal system. This expression can be easily analyzed, and a robust set of conditions for finding zero and unity transmissions (even in the presence of extra electrodes) can be formulated. Using the proposed formalism, a detailed comparison between three- and two-terminal systems is performed, and it is shown, in particular, that transmission at bound states in the continuum does not change with the third electrode insertion. The main conclusions are illustratively exemplified by some three-terminal toy models. For instance, the influence of the tunneling coupling to the gate electrode is discussed for a model of quantum interference transistor. The results of this paper will be of high interest, in particular, within the field of quantum design of molecular electronic devices.


Sign in / Sign up

Export Citation Format

Share Document