scholarly journals Improved inclusion-exclusion identities via closure operators

2000 ◽  
Vol Vol. 4 no. 1 ◽  
Author(s):  
Klaus Dohmen

International audience Let (A_v)_v ∈ V be a finite family of sets. We establish an improved inclusion-exclusion identity for each closure operator on the power set of V having the unique base property. The result generalizes three improvements of the inclusion-exclusion principle as well as Whitney's broken circuit theorem on the chromatic polynomial of a graph.

2003 ◽  
Vol Vol. 6 no. 1 ◽  
Author(s):  
Klaus Dohmen ◽  
André Poenitz ◽  
Peter Tittmann

International audience We present a two-variable polynomial, which simultaneously generalizes the chromatic polynomial, the independence polynomial, and the matching polynomial of a graph. This new polynomial satisfies both an edge decomposition formula and a vertex decomposition formula. We establish two general expressions for this new polynomial: one in terms of the broken circuit complex and one in terms of the lattice of forbidden colorings. We show that the new polynomial may be considered as a specialization of Stanley's chromatic symmetric function. We finally give explicit expressions for the generalized chromatic polynomial of complete graphs, complete bipartite graphs, paths, and cycles, and show that it can be computed in polynomial time for trees and graphs of restricted pathwidth.


2004 ◽  
Vol Vol. 6 no. 2 ◽  
Author(s):  
Karell Bertet ◽  
Mirabelle Nebut

International audience An implication system (IS) on a finite set S is a set of rules called Σ -implications of the kind A →_Σ B, with A,B ⊆ S. A subset X ⊆ S satisfies A →_Σ B when ''A ⊆ X implies B ⊆ X'' holds, so ISs can be used to describe constraints on sets of elements, such as dependency or causality. ISs are formally closely linked to the well known notions of closure operators and Moore families. This paper focuses on their algorithmic aspects. A number of problems issued from an IS Σ (e.g. is it minimal, is a given implication entailed by the system) can be reduced to the computation of closures φ _Σ (X), where φ _Σ is the closure operator associated to Σ . We propose a new approach to compute such closures, based on the characterization of the direct-optimal IS Σ _do which has the following properties: \beginenumerate ıtemit is equivalent to Σ ıtemφ _Σ _do(X) (thus φ _Σ (X)) can be computed by a single scanning of Σ _do-implications ıtemit is of minimal size with respect to ISs satisfying 1. and 2. \endenumerate We give algorithms that compute Σ _do, and from Σ _do closures φ _Σ (X) and the Moore family associated to φ _Σ .


2021 ◽  
Vol 179 (1) ◽  
pp. 59-74
Author(s):  
Josef Šlapal

In this paper, we propose new definitions of digital Jordan curves and digital Jordan surfaces. We start with introducing and studying closure operators on a given set that are associated with n-ary relations (n > 1 an integer) on this set. Discussed are in particular the closure operators associated with certain n-ary relations on the digital line ℤ. Of these relations, we focus on a ternary one equipping the digital plane ℤ2 and the digital space ℤ3 with the closure operator associated with the direct product of two and three, respectively, copies of this ternary relation. The connectedness provided by the closure operator is shown to be suitable for defining digital curves satisfying a digital Jordan curve theorem and digital surfaces satisfying a digital Jordan surface theorem.


2018 ◽  
Vol 106 (03) ◽  
pp. 342-360 ◽  
Author(s):  
G. CHIASELOTTI ◽  
T. GENTILE ◽  
F. INFUSINO

In this paper, we introduce asymmetry geometryfor all those mathematical structures which can be characterized by means of a generalization (which we call pairing) of a finite rectangular table. In more detail, let$\unicode[STIX]{x1D6FA}$be a given set. Apairing$\mathfrak{P}$on$\unicode[STIX]{x1D6FA}$is a triple$\mathfrak{P}:=(U,F,\unicode[STIX]{x1D6EC})$, where$U$and$\unicode[STIX]{x1D6EC}$are nonempty sets and$F:U\times \unicode[STIX]{x1D6FA}\rightarrow \unicode[STIX]{x1D6EC}$is a map having domain$U\times \unicode[STIX]{x1D6FA}$and codomain$\unicode[STIX]{x1D6EC}$. Through this notion, we introduce a local symmetry relation on$U$and a global symmetry relation on the power set${\mathcal{P}}(\unicode[STIX]{x1D6FA})$. Based on these two relations, we establish the basic properties of our symmetry geometry induced by$\mathfrak{P}$. The basic tool of our study is a closure operator$M_{\mathfrak{P}}$, by means of which (in the finite case) we can represent any closure operator. We relate the study of such a closure operator to several types of others set operators and set systems which refine the notion of an abstract simplicial complex.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Julien Clément ◽  
J. Fayolle ◽  
P. Nicodème

International audience In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that the set of words is reduced (<i>i..e.</i>, where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-exclusion principle and compare the complexity of the method proposed here with the one using automata for solving the problem.


Filomat ◽  
2016 ◽  
Vol 30 (3) ◽  
pp. 863-871 ◽  
Author(s):  
Josef Slapal

Given a simple graph, we associate with every set of paths of the same positive length a closure operator on the (vertex set of the) graph. These closure operators are then studied. In particular, it is shown that the connectedness with respect to them is a certain kind of path connectedness. Closure operators associated with sets of paths in some graphs with the vertex set Z2 are discussed which include the well known Marcus-Wyse and Khalimsky topologies used in digital topology. This demonstrates possible applications of the closure operators investigated in digital image analysis.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Radmila Sazdanović ◽  
Martha Yip

International audience The Stanley chromatic polynomial of a graph $G$ is a symmetric function generalization of the chromatic polynomial, and has interesting combinatorial properties. We apply the ideas of Khovanov homology to construct a homology $H$<sub>*</sub>($G$) of graded $S_n$-modules, whose graded Frobenius series $Frob_G(q,t)$ reduces to the chromatic symmetric function at $q=t=1$. We also obtain analogues of several familiar properties of the chromatic symmetric polynomials in terms of homology. Le polynôme chromatique symétrique d’un graphe $G$ est une généralisation par une fonction symétrique du polynôme chromatique, et possède des propriétés combinatoires intéressantes. Nous appliquons les techniques de l’homologie de Khovanov pour construire une homologie $H$<sub>*</sub>($G$) de modules gradués $S_n$, dont la série bigraduée de Frobeniusse $Frob_G(q,t)$ réduit au polynôme chromatique symétrique à $q=t=1$. Nous obtenons également des analogies pour plusieurs propriétés connues des polynômes chromatiques en termes d’homologie.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Kenji Kashiwabara ◽  
Masataka Nakamura

International audience We introduce a notion of a $\textit{broken circuit}$ and an $\textit{NBC complex}$ for an (abstract) convex geometry. Based on these definitions, we shall show the analogues of the Whitney-Rota's formula and Brylawski's decomposition theorem for broken circuit complexes on matroids for convex geometries. We also present an Orlik-Solomon type algebra on a convex geometry, and show the NBC generating theorem.


2019 ◽  
Vol 71 (2) ◽  
pp. 299-336 ◽  
Author(s):  
Matthew Dyer

AbstractThis paper provides some evidence for conjectural relations between extensions of (right) weak order on Coxeter groups, closure operators on root systems, and Bruhat order. The conjecture focused upon here refines an earlier question as to whether the set of initial sections of reflection orders, ordered by inclusion, forms a complete lattice. Meet and join in weak order are described in terms of a suitable closure operator. Galois connections are defined from the power set of $W$ to itself, under which maximal subgroups of certain groupoids correspond to certain complete meet subsemilattices of weak order. An analogue of weak order for standard parabolic subsets of any rank of the root system is defined, reducing to the usual weak order in rank zero, and having some analogous properties in rank one (and conjecturally in general).


Author(s):  
Osama A. El-Tantawy ◽  
Sobhy A. El-Sheikh ◽  
Rasha N. Majeed

This chapter is devoted to the study of r-generalized fuzzy closed sets (briefly, gfc sets) in smooth bitopological spaces (briefly, smooth bts) in view definition of Šostak (1985). The chapter is divided into seven sections. The aim of Sections 1-2 is to introduce the fundamental concepts related to the work. In Section 3, the concept of r-(ti,tj)-gfc sets in the smooth bts's is introduce and investigate some notions of these sets, generalized fuzzy closure operator induced from these sets. In Section 4, (i,j)-GF-continuous (respectively, irresolute) mappings are introduced. In Section 5, the supra smooth topology which generated from a smooth bts is used to introduce and study the notion of r-t12-gfc sets for smooth bts's and supra generalized fuzzy closure operator . The present notion of gfc sets and the notion which introduced in section 3, are independent. In Section 6, two types of generalized supra fuzzy closure operators introduced by using two different approaches. Finally, Section 7 introduces and studies different types of fuzzy continuity which are related to closure.


Sign in / Sign up

Export Citation Format

Share Document