scholarly journals Tropical secant graphs of monomial curves

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
María Angélica Cueto ◽  
Shaowei Lin

International audience We construct and study an embedded weighted balanced graph in $\mathbb{R}^{n+1}$ parametrized by a strictly increasing sequence of $n$ coprime numbers $\{ i_1, \ldots, i_n\}$, called the $\textit{tropical secant surface graph}$. We identify it with the tropicalization of a surface in $\mathbb{C}^{n+1}$ parametrized by binomials. Using this graph, we construct the tropicalization of the first secant variety of a monomial projective curve with exponent vector $(0, i_1, \ldots, i_n)$, which can be described by a balanced graph called the $\textit{tropical secant graph}$. The combinatorics involved in computing the degree of this classical secant variety is non-trivial. One earlier approach to this is due to K. Ranestad. Using techniques from tropical geometry, we give algorithms to effectively compute this degree (as well as its multidegree) and the Newton polytope of the first secant variety of any given monomial curve in $\mathbb{P}^4$. On construit et on étude un graphe plongé dans $\mathbb{R}^{n+1}$ paramétrisé par une suite strictement croissante de $n$ nombres entiers $\{ i_1, \ldots, i_n\}$, premiers entre eux. Ce graphe s'appelle $\textit{graphe tropical surface sécante}$. On montre que ce graphe est la tropicalisation d'une surface dans $\mathbb{C}^{n+1}$ paramétrisé par des binômes. On utilise ce graphe pour construire la tropicalisation de la première sécante d'une courbe monomiale ayant comme vecteur d'exponents $(0, i_1, \ldots, i_n)$. On représente cette variété tropicale pour un graphe balancé (le $\textit{graphe tropical sécante}$). La combinatoire qu'on utilise pour le calcul du degré de ces variétés sécantes classiques n'est pas triviale, et a été developpée par K. Ranestad. En utilisant des techniques de la géométrie tropicale, on donne des algorithmes qui calculent le degré (même le multidegré) et le polytope de Newton de la première sécante d'une courbe monomiale de $\mathbb{P}^4$.

2019 ◽  
Vol 26 (04) ◽  
pp. 629-642
Author(s):  
Anargyros Katsabekis

Let C(n) be a complete intersection monomial curve in the 4-dimensional affine space. In this paper we study the complete intersection property of the monomial curve C(n + wv), where w > 0 is an integer and v ∈ ℕ4. In addition, we investigate the Cohen–Macaulayness of the tangent cone of C(n + wv).


1985 ◽  
Vol 37 (5) ◽  
pp. 872-892 ◽  
Author(s):  
Jürgen Kraft

Let 2 ≦ s ∊ N and {n1, …, ns) ⊆ N*. In 1884, J. Sylvester [13] published the following well-known result on the singularity degree S of the monomial curve whose corresponding semigroup is S: = 〈n1, …, ns): If s = 2, thenLet K: = –Z\S andfor all 1 ≦ i ≦ s. We introduce the invariantof S involving a correction term to the Milnor number 2δ [4] of S. As a modified version and extension of Sylvester's result to all monomial space curves, we prove the following theorem: If s = 3, thenWe prove similar formulas for s = 4 if S is symmetric.


2018 ◽  
Vol 98 (2) ◽  
pp. 230-238
Author(s):  
MESUT ŞAHİN

We study an operation, that we call lifting, creating nonisomorphic monomial curves from a single monomial curve. Our main result says that all but finitely many liftings of a monomial curve have Cohen–Macaulay tangent cones even if the tangent cone of the original curve is not Cohen–Macaulay. This implies that the Betti sequence of the tangent cone is eventually constant under this operation. Moreover, all liftings have Cohen–Macaulay tangent cones when the original monomial curve has a Cohen–Macaulay tangent cone. In this case, all the Betti sequences are just the Betti sequence of the original curve.


2016 ◽  
Vol 27 (05) ◽  
pp. 1650045 ◽  
Author(s):  
Danielle Lara ◽  
Simone Marchesi ◽  
Renato Vidal Martins

Let [Formula: see text] be an integral and projective curve whose canonical model [Formula: see text] lies on a rational normal scroll [Formula: see text] of dimension [Formula: see text]. We mainly study some properties on [Formula: see text], such as gonality and the kind of singularities, in the case where [Formula: see text] and [Formula: see text] is non-Gorenstein, and in the case where [Formula: see text], the scroll [Formula: see text] is smooth, and [Formula: see text] is a local complete intersection inside [Formula: see text]. We also prove that the canonical model of a rational monomial curve with just one singular point lies on a surface scroll if and only if the gonality of the curve is at most [Formula: see text], and that it lies on a threefold scroll if and only if the gonality is at most [Formula: see text].


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Adam Kalman

International audience We study Newton polytopes of cluster variables in type $A_n$ cluster algebras, whose cluster and coefficient variables are indexed by the diagonals and boundary segments of a polygon. Our main results include an explicit description of the affine hull and facets of the Newton polytope of the Laurent expansion of any cluster variable, with respect to any cluster. In particular, we show that every Laurent monomial in a Laurent expansion of a type $A$ cluster variable corresponds to a vertex of the Newton polytope. We also describe the face lattice of each Newton polytope via an isomorphism with the lattice of elementary subgraphs of the associated snake graph. Nous étudions polytopes de Newton des variables amassées dans les algèbres amassées de type A, dont les variables sont indexés par les diagonales et les côtés d’un polygone. Nos principaux résultats comprennent une description explicite de l’enveloppe affine et facettes du polytope de Newton du développement de Laurent de toutes variables amassées. En particulier, nous montrons que tout monôme Laurent dans un développement de Laurent de variable amassée de type A correspond à un sommet du polytope de Newton. Nous décrivons aussi le treillis des facesde chaque polytope de Newton via un isomorphisme avec le treillis des sous-graphes élémentaires du “snake graph” qui est associé.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Diane Maclagan ◽  
Felipe Rincón

International audience We introduce and study a special class of ideals over the semiring of tropical polynomials, which we calltropical ideals, with the goal of developing a useful and solid algebraic foundation for tropical geometry. We exploretheir rich combinatorial structure, and prove that they satisfy numerous properties analogous to classical ideals.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Christopher Manon

International audience We will discuss some recent theorems relating the space of weighted phylogenetic trees to the tropical varieties of each flag variety of type A. We will also discuss the tropicalizations of the functions corresponding to semi-standard tableaux, in particular we relate them to familiar functions from phylogenetics. We close with some remarks on the generalization of these results to the tropical geometry of arbitrary flag varieties. This involves the family of Bergman complexes derived from the hyperplane arrangements associated to simple Dynkin diagrams. Nous allons discuter de quelques théorèmes récents concernant l'espace des arbres phylogénétiques aux variétés Tropicales de chaque variété de drapeaux de type A. Nous allons également discuter des tropicalisations des fonctions correspondant à tableaux semi-standard, en particulier, nous les rapporter à des fonctions familières de la phylogénétique. Nous terminerons avec quelques remarques sur la généralisation de ces résultats à la géométrie tropicale de variétés de drapeaux arbitraires. Il s'agit de la famille de complexes Bergman provenant des arrangements d'hyperplans associés à des diagrammes de Dynkin simples.


2021 ◽  
Vol 18 (4) ◽  
Author(s):  
Alessio Moscariello ◽  
Francesco Strazzanti

AbstractWe extend some results on almost Gorenstein affine monomial curves to the nearly Gorenstein case. In particular, we prove that the Cohen–Macaulay type of a nearly Gorenstein monomial curve in $${\mathbb {A}}^4$$ A 4 is at most 3, answering a question of Stamate in this particular case. Moreover, we prove that, if $${\mathcal {C}}$$ C is a nearly Gorenstein affine monomial curve that is not Gorenstein and $$n_1, \dots , n_{\nu }$$ n 1 , ⋯ , n ν are the minimal generators of the associated numerical semigroup, the elements of $$\{n_1, \dots , \widehat{n_i}, \dots , n_{\nu }\}$$ { n 1 , ⋯ , n i ^ , ⋯ , n ν } are relatively coprime for every i.


2013 ◽  
Vol 23 (04n05) ◽  
pp. 397-423 ◽  
Author(s):  
IOANNIS Z. EMIRIS ◽  
VISSARION FISIKOPOULOS ◽  
CHRISTOS KONAXIS ◽  
LUIS PEÑARANDA

We design an algorithm to compute the Newton polytope of the resultant, known as resultant polytope, or its orthogonal projection along a given direction. The resultant is fundamental in algebraic elimination, optimization, and geometric modeling. Our algorithm exactly computes vertex- and halfspace-representations of the polytope using an oracle producing resultant vertices in a given direction, thus avoiding walking on the polytope whose dimension is α - n - 1, where the input consists of α points in ℤn. Our approach is output-sensitive as it makes one oracle call per vertex and per facet. It extends to any polytope whose oracle-based definition is advantageous, such as the secondary and discriminant polytopes. Our publicly available implementation uses the experimental CGAL package triangulation. Our method computes 5-, 6- and 7- dimensional polytopes with 35K, 23K and 500 vertices, respectively, within 2hrs, and the Newton polytopes of many important surface equations encountered in geometric modeling in < 1sec, whereas the corresponding secondary polytopes are intractable. It is faster than tropical geometry software up to dimension 5 or 6. Hashing determinantal predicates accelerates execution up to 100 times. One variant computes inner and outer approximations with, respectively, 90% and 105% of the true volume, up to 25 times faster.


Sign in / Sign up

Export Citation Format

Share Document