scholarly journals Tropical Ideals

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Diane Maclagan ◽  
Felipe Rincón

International audience We introduce and study a special class of ideals over the semiring of tropical polynomials, which we calltropical ideals, with the goal of developing a useful and solid algebraic foundation for tropical geometry. We exploretheir rich combinatorial structure, and prove that they satisfy numerous properties analogous to classical ideals.

2018 ◽  
Vol 154 (3) ◽  
pp. 640-670 ◽  
Author(s):  
Diane Maclagan ◽  
Felipe Rincón

We introduce and study a special class of ideals, called tropical ideals, in the semiring of tropical polynomials, with the goal of developing a useful and solid algebraic foundation for tropical geometry. The class of tropical ideals strictly includes the tropicalizations of classical ideals, and allows us to define subschemes of tropical toric varieties, generalizing Giansiracusa and Giansiracusa [Equations of tropical varieties, Duke Math. J. 165 (2016), 3379–3433]. We investigate some of the basic structure of tropical ideals, and show that they satisfy many desirable properties that mimic the classical setup. In particular, every tropical ideal has an associated variety, which we prove is always a finite polyhedral complex. In addition we show that tropical ideals satisfy the ascending chain condition, even though they are typically not finitely generated, and also the weak Nullstellensatz.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Suho Oh

International audience Recently Postnikov gave a combinatorial description of the cells in a totally-nonnegative Grassmannian. These cells correspond to a special class of matroids called positroids. There are many interesting combinatorial objects associated to a positroid. We introduce some recent results, including the generalization and proof of the purity conjecture by Leclerc and Zelevinsky on weakly separated sets.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Kenneth Barrese ◽  
Bruce Sagan

International audience Partition the rows of a board into sets of $m$ rows called levels. An $m$-level rook placement is a subset of squares of the board with no two in the same column or the same level. We construct explicit bijections to prove three theorems about such placements. We start with two bijections between Ferrers boards having the same number of $m$-level rook placements. The first generalizes a map by Foata and Schützenberger and our proof applies to any Ferrers board. The second generalizes work of Loehr and Remmel. This construction only works for a special class of Ferrers boards but also yields a formula for calculating the rook numbers of these boards in terms of elementary symmetric functions. Finally we generalize another result of Loehr and Remmel giving a bijection between boards with the same hit numbers. The second and third bijections involve the Involution Principle of Garsia and Milne. Nous considérons les rangs d’un échiquier partagés en ensembles de $m$ rangs appelés les niveaux. Un $m$-placement des tours est un sous-ensemble des carrés du plateau tel qu’il n’y a pas deux carrés dans la même colonne ou dans le même niveau. Nous construisons deux bijections explicites entre des plateaux de Ferrers ayant les mêmes nombres de $m$-placements. La première est une généralisation d’une fonction de Foata et Schützenberger et notre démonstration est pour n’importe quels plateaux de Ferrers. La deuxième généralise une bijection de Loehr et Remmel. Cette construction marche seulement pour des plateaux particuliers, mais ça donne une formule pour le nombre de $m$-placements en terme des fonctions symétriques élémentaires. Enfin, nous généralisons un autre résultat de Loehr et Remmel donnant une bijection entre deux plateaux ayant les mêmes nombres de coups. Les deux dernières bijections utilisent le Principe des Involutions de Garsia et Milne.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Rachel Karpman

International audience The positroid decomposition of the Grassmannian refines the well-known Schubert decomposition, and has a rich combinatorial structure. There are a number of interesting combinatorial posets which index positroid varieties,just as Young diagrams index Schubert varieties. In addition, Postnikov’s boundary measurement map gives a family of parametrizations for each positroid variety. The domain of each parametrization is the space of edge weights of a weighted planar network. The positroid stratification of the Grassmannian provides an elementary example of Lusztig’s theory of total non negativity for partial flag varieties, and has remarkable applications to particle physics.We generalize the combinatorics of positroid varieties to the Lagrangian Grassmannian, the moduli space of maximal isotropic subspaces with respect to a symplectic form


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
I. Fanti ◽  
A. Frosini ◽  
E. Grazzini ◽  
R. Pinzani ◽  
S. Rinaldi

International audience In this paper we consider the class of $\textit{permutominoes}$, i.e. a special class of polyominoes which are determined by a pair of permutations having the same size. We give a characterization of the permutations associated with convex permutominoes, and then we enumerate various classes of convex permutominoes, including parallelogram, directed-convex, and stack ones.


Author(s):  
Alexander Mang ◽  
Moritz Weber

AbstractCompact quantum groups can be studied by investigating their representation categories in analogy to the Schur–Weyl/Tannaka–Krein approach. For the special class of (unitary) “easy” quantum groups, these categories arise from a combinatorial structure: rows of two-colored points form the objects, partitions of two such rows the morphisms. Vertical/horizontal concatenation and reflection give composition, monoidal product and involution. Of the four possible classes $${\mathcal {O}}$$ O , $${\mathcal {B}}$$ B , $${\mathcal {S}}$$ S and $${\mathcal {H}}$$ H of such categories (inspired, respectively, by the classical orthogonal, bistochastic, symmetric and hyperoctahedral groups), we treat the first three—the non-hyperoctahedral ones. We introduce many new examples of such categories. They are defined in terms of subtle combinations of block size, coloring and non-crossing conditions. This article is part of an effort to classify all non-hyperoctahedral categories of two-colored partitions. It is purely combinatorial in nature. The quantum group aspects are left out.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
María Angélica Cueto ◽  
Shaowei Lin

International audience We construct and study an embedded weighted balanced graph in $\mathbb{R}^{n+1}$ parametrized by a strictly increasing sequence of $n$ coprime numbers $\{ i_1, \ldots, i_n\}$, called the $\textit{tropical secant surface graph}$. We identify it with the tropicalization of a surface in $\mathbb{C}^{n+1}$ parametrized by binomials. Using this graph, we construct the tropicalization of the first secant variety of a monomial projective curve with exponent vector $(0, i_1, \ldots, i_n)$, which can be described by a balanced graph called the $\textit{tropical secant graph}$. The combinatorics involved in computing the degree of this classical secant variety is non-trivial. One earlier approach to this is due to K. Ranestad. Using techniques from tropical geometry, we give algorithms to effectively compute this degree (as well as its multidegree) and the Newton polytope of the first secant variety of any given monomial curve in $\mathbb{P}^4$. On construit et on étude un graphe plongé dans $\mathbb{R}^{n+1}$ paramétrisé par une suite strictement croissante de $n$ nombres entiers $\{ i_1, \ldots, i_n\}$, premiers entre eux. Ce graphe s'appelle $\textit{graphe tropical surface sécante}$. On montre que ce graphe est la tropicalisation d'une surface dans $\mathbb{C}^{n+1}$ paramétrisé par des binômes. On utilise ce graphe pour construire la tropicalisation de la première sécante d'une courbe monomiale ayant comme vecteur d'exponents $(0, i_1, \ldots, i_n)$. On représente cette variété tropicale pour un graphe balancé (le $\textit{graphe tropical sécante}$). La combinatoire qu'on utilise pour le calcul du degré de ces variétés sécantes classiques n'est pas triviale, et a été developpée par K. Ranestad. En utilisant des techniques de la géométrie tropicale, on donne des algorithmes qui calculent le degré (même le multidegré) et le polytope de Newton de la première sécante d'une courbe monomiale de $\mathbb{P}^4$.


2005 ◽  
Vol Vol. 7 ◽  
Author(s):  
Arthur Holshouser ◽  
Harold Reiter

International audience The purpose of this paper is to solve a special class of combinational games consisting of two-pile counter pickup games for which the maximum number of counters that can be removed on each successive move changes during the play of the games. Two players alternate moving. Each player in his turn first chooses one of the piles, and his choice of piles can change from move to move. He then removes counters from this chosen pile. A function f:Z^+ → Z^+ is given which determines the maximum size of the next move in terms of the current move size. The game ends as soon as one of the two piles is empty, and the winner is the last player to move in the game. The games for which f(k)=k, f(k)=2k, and f(k)=3k use the same formula for computing the smallest winning move size. Here we find all the functions f for which this formula works, and we also give the winning strategy for each function. See Holshouser, A, James Rudzinski and Harold Reiter: Dynamic One-Pile Nim for a discussion of the single pile game.


2004 ◽  
Vol Vol. 6 no. 2 ◽  
Author(s):  
Toufik Mansour

International audience Recently, Green and Losonczy~GL1,GL2 introduced \emphfreely braided permutation as a special class of restricted permutations has arisen in representation theory. The freely braided permutations were introduced and studied as the upper bound for the number of commutation classes of reduced expressions for an element of a simply laced Coxeter group is achieved if and only if when the element is freely braided. In this paper, we prove that the generating function for the number of freely braided permutations in S_n is given by \par (1-3x-2x^2+(1+x)√1-4x) / (1-4x-x^2+(1-x^2)√1-4x).\par


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Christopher Manon

International audience We will discuss some recent theorems relating the space of weighted phylogenetic trees to the tropical varieties of each flag variety of type A. We will also discuss the tropicalizations of the functions corresponding to semi-standard tableaux, in particular we relate them to familiar functions from phylogenetics. We close with some remarks on the generalization of these results to the tropical geometry of arbitrary flag varieties. This involves the family of Bergman complexes derived from the hyperplane arrangements associated to simple Dynkin diagrams. Nous allons discuter de quelques théorèmes récents concernant l'espace des arbres phylogénétiques aux variétés Tropicales de chaque variété de drapeaux de type A. Nous allons également discuter des tropicalisations des fonctions correspondant à tableaux semi-standard, en particulier, nous les rapporter à des fonctions familières de la phylogénétique. Nous terminerons avec quelques remarques sur la généralisation de ces résultats à la géométrie tropicale de variétés de drapeaux arbitraires. Il s'agit de la famille de complexes Bergman provenant des arrangements d'hyperplans associés à des diagrammes de Dynkin simples.


Sign in / Sign up

Export Citation Format

Share Document